Paglia David N, Chomack John M, Herlihy David V, Wetterstrand Charlene, Kadkoy Yazan, Duchnycz Roman, Kelly Patrick, O'Connor J Patrick, D'Andrea Susan E, Maikos Jason T
Department of Orthopaedics, Rutgers-New Jersey Medical School, Newark, NJ, United States.
Prosthetics and Sensory Aids Service, Veterans Affairs New York Harbor Healthcare System, New York, NY, United States.
Front Bioeng Biotechnol. 2025 May 19;13:1571639. doi: 10.3389/fbioe.2025.1571639. eCollection 2025.
Dynamic stereo x-ray (DSX) permits skin strain quantification with high accuracy. Validation of image-derived strain can be performed via mechanical testing inside a DSX capture volume while simultaneously comparing strain measurements. However, electromagnetic mechanical testing systems (eMTSs) emit magnetic fields that affect DSX image formation components and cause image distortion. This study presents a custom solution to redirect this magnetic field from the DSX capture volume to mitigate image distortion.
A MuMETAL-lined box contoured to the test frame was developed to divert the magnetic field from the DSX test space. To assess the design, a radiopaque object was placed in the eMTS with shielding and within the DSX capture volume at either 65 or 103 cm from the image intensifiers (IIs) while the speed of the eMTS actuator was systematically increased from 0.1 to 10 mm/s during image collection. Root mean square error (RSME) was calculated over 1,000 frames for each test condition.
Results indicated a proportional change in RSME with increasing distance and decreasing speed. At 65 cm, higher actuator speeds (10 mm/s) produced the largest RSME (0.11 mm), significantly higher than the control test. At 103 cm, RSME was below 0.05 mm for all speeds.
While closer distance to the IIs and higher actuator speeds produced larger RSME, results indicated that RSME for all experimental conditions fell below the established RSME associated with DSX marker tracking. The MuMETAL-lined box therefore mitigated DSX image distortion caused by the eMTS regardless of distance to the IIs and actuator speed.
clinicaltrials.gov, identifier NCT05287646.
动态立体X射线(DSX)能够高精度地对皮肤应变进行量化。可通过在DSX采集空间内进行机械测试并同时比较应变测量值,来对图像衍生应变进行验证。然而,电磁机械测试系统(eMTSs)会发出磁场,影响DSX图像形成组件并导致图像失真。本研究提出了一种定制解决方案,将该磁场从DSX采集空间 redirected,以减轻图像失真。
开发了一个内衬MuMETAL的盒子,其轮廓与测试框架相符,以将磁场从DSX测试空间转移。为评估该设计,将一个不透射线的物体放置在带有屏蔽的eMTS中,并置于DSX采集空间内,距离图像增强器(IIs)65或103厘米处,同时在图像采集期间将eMTS执行器的速度从0.1毫米/秒系统地提高到10毫米/秒。针对每个测试条件,在1000帧上计算均方根误差(RSME)。
结果表明,RSME随距离增加和速度降低而呈比例变化。在65厘米处,较高的执行器速度(10毫米/秒)产生了最大的RSME(0.11毫米),显著高于对照测试。在103厘米处,所有速度下的RSME均低于0.05毫米。
虽然离IIs更近的距离和更高的执行器速度会产生更大的RSME,但结果表明,所有实验条件下的RSME均低于与DSX标记跟踪相关的既定RSME。因此,内衬MuMETAL的盒子减轻了由eMTS引起的DSX图像失真,无论离IIs的距离和执行器速度如何。
clinicaltrials.gov,标识符NCT05287646。