Suppr超能文献

基于卷积神经网络中卷积长短期记忆的全身动态 PET 无监督帧间运动校正。

Unsupervised inter-frame motion correction for whole-body dynamic PET using convolutional long short-term memory in a convolutional neural network.

机构信息

Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA.

Siemens Medical Solutions USA, Inc., Knoxville, TN, 37932, USA.

出版信息

Med Image Anal. 2022 Aug;80:102524. doi: 10.1016/j.media.2022.102524. Epub 2022 Jun 25.

Abstract

Subject motion in whole-body dynamic PET introduces inter-frame mismatch and seriously impacts parametric imaging. Traditional non-rigid registration methods are generally computationally intense and time-consuming. Deep learning approaches are promising in achieving high accuracy with fast speed, but have yet been investigated with consideration for tracer distribution changes or in the whole-body scope. In this work, we developed an unsupervised automatic deep learning-based framework to correct inter-frame body motion. The motion estimation network is a convolutional neural network with a combined convolutional long short-term memory layer, fully utilizing dynamic temporal features and spatial information. Our dataset contains 27 subjects each under a 90-min FDG whole-body dynamic PET scan. Evaluating performance in motion simulation studies and a 9-fold cross-validation on the human subject dataset, compared with both traditional and deep learning baselines, we demonstrated that the proposed network achieved the lowest motion prediction error, obtained superior performance in enhanced qualitative and quantitative spatial alignment between parametric K and V images, and significantly reduced parametric fitting error. We also showed the potential of the proposed motion correction method for impacting downstream analysis of the estimated parametric images, improving the ability to distinguish malignant from benign hypermetabolic regions of interest. Once trained, the motion estimation inference time of our proposed network was around 460 times faster than the conventional registration baseline, showing its potential to be easily applied in clinical settings.

摘要

全身动态 PET 中的受试者运动引入了帧间失配,严重影响了参数成像。传统的非刚性配准方法通常计算量大且耗时。深度学习方法在实现高精度和快速速度方面具有很大的潜力,但尚未考虑示踪剂分布变化或全身范围进行研究。在这项工作中,我们开发了一种无监督的自动深度学习框架,用于校正帧间身体运动。运动估计网络是一个具有组合卷积长短期记忆层的卷积神经网络,充分利用了动态时间特征和空间信息。我们的数据集包含 27 名受试者,每名受试者在 90 分钟的 FDG 全身动态 PET 扫描下进行。在运动模拟研究中和在人类受试者数据集上的 9 折交叉验证中评估性能,与传统和深度学习基线相比,我们证明了所提出的网络实现了最低的运动预测误差,在增强参数 K 和 V 图像之间的定性和定量空间对准方面表现出更好的性能,并显著降低了参数拟合误差。我们还展示了所提出的运动校正方法在影响估计的参数图像下游分析方面的潜力,提高了区分恶性和良性高代谢感兴趣区域的能力。一旦训练完成,我们提出的网络的运动估计推断时间比传统的配准基线快约 460 倍,表明其在临床环境中易于应用的潜力。

相似文献

5
Inter-pass motion correction for whole-body dynamic PET and parametric imaging.全身动态正电子发射断层扫描及参数成像的帧间运动校正
IEEE Trans Radiat Plasma Med Sci. 2023 Apr;7(4):344-353. doi: 10.1109/trpms.2022.3227576. Epub 2022 Dec 8.

引用本文的文献

2
Whole-body PET image denoising for reduced acquisition time.用于减少采集时间的全身PET图像去噪
Front Med (Lausanne). 2024 Sep 30;11:1415058. doi: 10.3389/fmed.2024.1415058. eCollection 2024.
8
Inter-pass motion correction for whole-body dynamic PET and parametric imaging.全身动态正电子发射断层扫描及参数成像的帧间运动校正
IEEE Trans Radiat Plasma Med Sci. 2023 Apr;7(4):344-353. doi: 10.1109/trpms.2022.3227576. Epub 2022 Dec 8.

本文引用的文献

1
Inter-pass motion correction for whole-body dynamic PET and parametric imaging.全身动态正电子发射断层扫描及参数成像的帧间运动校正
IEEE Trans Radiat Plasma Med Sci. 2023 Apr;7(4):344-353. doi: 10.1109/trpms.2022.3227576. Epub 2022 Dec 8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验