Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 0200, Australia.
J Chem Phys. 2010 Jan 14;132(2):024501. doi: 10.1063/1.3279124.
We study the statistical mechanics of thermal conduction in a classical many-body system that is in contact with two thermal reservoirs maintained at different temperatures. The ratio of the probabilities, that when observed for a finite time, the time averaged heat flux flows in and against the direction required by Fourier's Law for heat flow, is derived from first principles. This result is obtained using the transient fluctuation theorem. We show that the argument of that theorem, namely, the dissipation function is, close to equilibrium, equal to a microscopic expression for the entropy production. We also prove that if transient time correlation functions of smooth zero mean variables decay to zero at long times, the system will relax to a unique nonequilibrium steady state, and for this state, the thermal conductivity must be positive. Our expressions are tested using nonequilibrium molecular dynamics simulations of heat flow between thermostated walls.
我们研究了与两个处于不同温度的热库接触的经典多体系统中热传导的统计力学。从第一性原理推导出了在有限时间内观察到的时间平均热流与傅立叶定律所要求的热流方向相反的概率比。这个结果是使用瞬态涨落定理得到的。我们表明,该定理的论点,即耗散函数,在接近平衡时,等于熵产生的微观表达式。我们还证明,如果平滑零均值变量的瞬态时间相关函数在长时间内衰减到零,那么系统将弛豫到一个独特的非平衡稳态,对于这个状态,热导率必须是正的。我们的表达式使用热壁之间的非平衡分子动力学模拟来测试。