Reich K V
Ioffe Physical-Technical Institute, 194021 St. Petersburg, Russia.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 May;87(5):052109. doi: 10.1103/PhysRevE.87.052109. Epub 2013 May 8.
The heat flow and thermal profile in a one-dimensional (1D) harmonic lattice with coordinate-dependent masses have been calculated in the thermodynamic limit. It is shown in the particular example of a 1D harmonic lattice with linearly increasing masses that in standard Langevin conditions of contact, a temperature gradient can form, and Fourier's law can be obeyed.
在热力学极限下,已经计算了具有坐标依赖质量的一维(1D)简谐晶格中的热流和热分布。在质量线性增加的一维简谐晶格的特定例子中表明,在标准的接触朗之万条件下,可以形成温度梯度,并且可以遵守傅里叶定律。