Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, USA.
J Chem Phys. 2010 Jan 14;132(2):024709. doi: 10.1063/1.3277672.
We investigated the molecular adsorption of methane, ethane, and propane on a PdO(101) thin film using temperature programmed desorption (TPD) and density functional theory (DFT) calculations. The TPD data reveal that each of the alkanes adsorbs into a low-coverage molecular state on PdO(101) in which the binding is stronger than that for alkanes physically adsorbed on Pd(111). Analysis of the TPD data using limiting values of the desorption prefactors predicts that the alkane binding energies on PdO(101) increase linearly with increasing chain length, but that the resulting line extrapolates to a nonzero value between about 22 and 26 kJ/mol at zero chain length. This constant offset implies that a roughly molecule-independent interaction contributes to the alkane binding energies for the molecules studied. DFT calculations predict that the small alkanes bind on PdO(101) by forming dative bonds with coordinatively unsaturated Pd atoms. The resulting adsorbed species are analogous to alkane sigma-complexes in that the bonding involves electron donation from C-H sigma bonds to the Pd center as well as backdonation from the metal, which weakens the C-H bonds. The binding energies predicted by DFT lie in a range from 16 to 24 kJ/mol, in good agreement with the constant offsets estimated from the TPD data. We conclude that both the dispersion interaction and the formation of sigma-complexes contribute to the binding of small alkanes on PdO(101), and estimate that sigma-complex formation accounts for between 30% and 50% of the total binding energy for the molecules studied. The predicted weakening of C-H bonds resulting from sigma-complex formation may help to explain the high activity of PdO surfaces toward alkane activation.
我们使用程序升温脱附(TPD)和密度泛函理论(DFT)计算研究了甲烷、乙烷和丙烷在 PdO(101) 薄膜上的分子吸附。TPD 数据表明,每种烷烃在 PdO(101)上以低覆盖率的分子状态吸附,其结合强度大于烷烃在 Pd(111)上的物理吸附。使用脱附前因子的极限值对 TPD 数据进行分析,预测烷烃在 PdO(101)上的结合能随链长线性增加,但结果表明,在零链长时,该线外推至大约 22 至 26 kJ/mol 的非零值。这种恒定的偏移意味着一种大致与分子无关的相互作用对所研究分子的烷烃结合能有贡献。DFT 计算预测,小分子烷烃通过与配位不饱和的 Pd 原子形成配位键在 PdO(101)上结合。由此产生的吸附物种类似于烷烃 sigma-配合物,因为键合涉及 C-H sigma 键向 Pd 中心的电子捐赠以及金属的反馈捐赠,从而削弱了 C-H 键。DFT 预测的结合能范围为 16 至 24 kJ/mol,与从 TPD 数据估计的恒定偏移值吻合较好。我们得出结论,色散相互作用和 sigma-配合物的形成都有助于小分子烷烃在 PdO(101)上的结合,并估计 sigma-配合物的形成占所研究分子总结合能的 30%至 50%。sigma-配合物形成导致 C-H 键的弱化可能有助于解释 PdO 表面对烷烃活化的高活性。