Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA.
Chem Soc Rev. 2014 Nov 21;43(22):7536-47. doi: 10.1039/c3cs60420a.
Advances in the fundamental understanding of alkane activation on oxide surfaces are essential for developing new catalysts that efficiently and selectively promote chemical transformations of alkanes. In this tutorial review, we discuss the current understanding of alkane activation on crystalline metal oxide surfaces, and focus mainly on summarizing our findings on alkane adsorption and C-H bond cleavage on the PdO(101) surface as determined from model ultrahigh vacuum experiments and theoretical calculations. These studies show that alkanes form strongly-bound σ-complexes on PdO(101) by datively bonding with coordinatively-unsaturated Pd atoms and that these molecularly adsorbed species serve as precursors for C-H bond activation on the oxide surface. In addition to discussing the binding and properties of alkane σ-complexes on PdO(101), we also summarize recent advances in kinetic models to predict alkane dissociation rates on solid surfaces. Lastly, we highlight computations which predict that the formation and facile C-H bond activation of alkane σ-complexes also occurs on RuO2 and IrO2 surfaces.
在氧化物表面上烷烃活化的基本理解方面的进展对于开发能够高效和选择性地促进烷烃化学转化的新型催化剂至关重要。在本综述中,我们讨论了在结晶金属氧化物表面上烷烃活化的最新理解,并主要集中于总结我们在 PdO(101)表面上烷烃吸附和 C-H 键断裂的研究结果,这些结果是通过模型超高真空实验和理论计算确定的。这些研究表明,烷烃通过与配位不饱和的 Pd 原子形成强的 σ-配合物而在 PdO(101)上形成,并且这些分子吸附物种作为氧化物表面上 C-H 键活化的前体。除了讨论 PdO(101)上烷烃 σ-配合物的结合和性质外,我们还总结了用于预测固体表面上烷烃解离速率的动力学模型的最新进展。最后,我们强调了计算预测表明,烷烃 σ-配合物的形成和易于 C-H 键活化也发生在 RuO2 和 IrO2 表面上。