School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69778, Israel.
J Chem Phys. 2010 Jan 21;132(3):034703. doi: 10.1063/1.3285299.
NMR observable nuclei undergoing restricted diffusion within confining pores are important reporters for microstructural features of porous media including, inter-alia, biological tissues, emulsions and rocks. Diffusion NMR, and especially the single-pulsed field gradient (s-PFG) methodology, is one of the most important noninvasive tools for studying such opaque samples, enabling extraction of important microstructural information from diffusion-diffraction phenomena. However, when the pores are not monodisperse and are characterized by a size distribution, the diffusion-diffraction patterns disappear from the signal decay, and the relevant microstructural information is mostly lost. A recent theoretical study predicted that the diffusion-diffraction patterns in double-PFG (d-PFG) experiments have unique characteristics, such as zero-crossings, that make them more robust with respect to size distributions. In this study, we theoretically compared the signal decay arising from diffusion in isolated cylindrical pores characterized by lognormal size distributions in both s-PFG and d-PFG methodologies using a recently presented general framework for treating diffusion in NMR experiments. We showed the gradual loss of diffusion-diffraction patterns in broadening size distributions in s-PFG and the robustness of the zero-crossings in d-PFG even for very large standard deviations of the size distribution. We then performed s-PFG and d-PFG experiments on well-controlled size distribution phantoms in which the ground-truth is well-known a priori. We showed that the microstructural information, as manifested in the diffusion-diffraction patterns, is lost in the s-PFG experiments, whereas in d-PFG experiments the zero-crossings of the signal persist from which relevant microstructural information can be extracted. This study provides a proof of concept that d-PFG may be useful in obtaining important microstructural features in samples characterized by size distributions.
在限制扩散的情况下,处于约束孔内的可观测 NMR 核是多孔介质微观结构特征的重要示踪剂,包括生物组织、乳液和岩石等。扩散 NMR 特别是单脉冲梯度(s-PFG)方法是研究此类不透明样品的最重要的非侵入性工具之一,它可以从扩散-衍射现象中提取重要的微观结构信息。然而,当孔径不是单分散的,并且具有尺寸分布特征时,扩散-衍射模式会从信号衰减中消失,相关的微观结构信息大部分丢失。最近的理论研究表明,双脉冲梯度(d-PFG)实验中的扩散-衍射模式具有独特的特征,例如过零点,这使得它们对尺寸分布更稳健。在这项研究中,我们使用最近提出的处理 NMR 实验中扩散的通用框架,从理论上比较了具有对数正态尺寸分布的孤立圆柱形孔在 s-PFG 和 d-PFG 方法中的扩散引起的信号衰减。我们表明,在 s-PFG 中,随着尺寸分布变宽,扩散-衍射模式逐渐消失,而在 d-PFG 中即使尺寸分布的标准偏差非常大,过零点也具有稳健性。然后,我们在具有良好控制的尺寸分布模型中进行了 s-PFG 和 d-PFG 实验,这些模型中的真实情况是事先已知的。我们表明,在 s-PFG 实验中,扩散-衍射模式所体现的微观结构信息丢失了,而在 d-PFG 实验中,信号的过零点仍然存在,从中可以提取相关的微观结构信息。这项研究提供了一个概念证明,即 d-PFG 可能有助于在具有尺寸分布的样品中获取重要的微观结构特征。