Suppr超能文献

猪声带的高渗性挑战:对上皮屏障功能的影响。

Hypertonic challenge to porcine vocal folds: effects on epithelial barrier function.

机构信息

Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, USA.

出版信息

Otolaryngol Head Neck Surg. 2010 Jan;142(1):79-84. doi: 10.1016/j.otohns.2009.09.011. Epub 2009 Nov 22.

Abstract

OBJECTIVE

Dehydration challenges can increase the chemical composition of surface fluid overlying vocal fold epithelia (hypertonic surface fluid). The vocal fold epithelium is posited to act as a barrier, shielding the lamina propria from perturbations in the airway lumen. However, the effects of hypertonic surface fluid on the barrier functions of vocal fold epithelia have not been quantified. We, therefore, sought to investigate whether hypertonic surface fluid compromises epithelial barrier function. We examined the effects of hypertonic surface fluid on vocal fold epithelial resistance, paracellular pathway morphology, and tight junction protein integrity.

STUDY DESIGN

Ex vivo, between group design.

SETTING

Laboratory.

METHODS

Porcine vocal folds (n = 24) were exposed to hypertonic or isotonic challenge and examined by electrophysiology, transmission electron microscopy, and Western blot analyses.

RESULTS

Hypertonic, but not isotonic, challenge significantly reduced transepithelial resistance. This decrease in resistance was observed immediately after the challenge and was consistent with the appearance of dilated paracellular pathway morphology. However, hypertonic challenge did not alter protein levels of occludin, zona occludens-1, E-cadherin, or beta-catenin.

CONCLUSION

Hypertonic surface fluid alters epithelial barrier function in the vocal folds. Specifically, exposure to hypertonic challenges increases epithelial permeability. Given the important role of the vocal fold epithelium in shielding the underlying mucosa from inhaled pathogens and pollutants, our data provide the impetus for future studies on pharmacological treatments aimed at restoring the hydration level and chemical composition of vocal fold surface fluid.

摘要

目的

脱水挑战会增加覆盖声带上皮的表面液的化学成分(高渗表面液)。声带上皮被认为是一种屏障,保护固有层免受气道腔中扰动的影响。然而,高渗表面液对声带上皮屏障功能的影响尚未被量化。因此,我们试图研究高渗表面液是否会损害上皮屏障功能。我们研究了高渗表面液对声带上皮电阻、旁细胞途径形态和紧密连接蛋白完整性的影响。

研究设计

离体、组间设计。

设置

实验室。

方法

猪声带(n=24)暴露于高渗或等渗挑战,并通过电生理学、透射电子显微镜和 Western blot 分析进行检查。

结果

高渗,但不是等渗,挑战显著降低了跨上皮电阻。这种电阻的降低在挑战后立即观察到,与扩张的旁细胞途径形态的出现一致。然而,高渗挑战并没有改变紧密连接蛋白、紧密连接蛋白-1、E-钙粘蛋白或β-连环蛋白的蛋白水平。

结论

高渗表面液改变了声带的上皮屏障功能。具体来说,暴露于高渗挑战会增加上皮通透性。鉴于声带上皮在保护下方黏膜免受吸入的病原体和污染物的重要作用,我们的数据为未来研究旨在恢复声带表面液的水合水平和化学成分的药理学治疗提供了动力。

相似文献

1
Hypertonic challenge to porcine vocal folds: effects on epithelial barrier function.
Otolaryngol Head Neck Surg. 2010 Jan;142(1):79-84. doi: 10.1016/j.otohns.2009.09.011. Epub 2009 Nov 22.
2
Acute stress to excised vocal fold epithelium from reactive oxygen species.
Laryngoscope. 2011 Oct;121(10):2180-4. doi: 10.1002/lary.22157. Epub 2011 Sep 6.
3
Simulated reflux decreases vocal fold epithelial barrier resistance.
Laryngoscope. 2010 Aug;120(8):1569-75. doi: 10.1002/lary.20983.
4
Bicarbonate availability for vocal fold epithelial defense to acidic challenge.
Ann Otol Rhinol Laryngol. 2014 Jan;123(1):71-6. doi: 10.1177/0003489414521143.
5
Utility of cell viability assays for use with ex vivo vocal fold epithelial tissue.
Laryngoscope. 2015 May;125(5):E180-5. doi: 10.1002/lary.25100. Epub 2014 Dec 15.
6
Tight junction-related barrier contributes to the electrophysiological asymmetry across vocal fold epithelium.
PLoS One. 2012;7(3):e34017. doi: 10.1371/journal.pone.0034017. Epub 2012 Mar 19.
7
Prolonged phonation impairs the integrity and barrier function of porcine vocal fold epithelium: a preliminary study.
Eur Arch Otorhinolaryngol. 2018 Jun;275(6):1547-1556. doi: 10.1007/s00405-018-4973-9. Epub 2018 Apr 18.
8
Acute Acrolein Exposure Induces Impairment of Vocal Fold Epithelial Barrier Function.
PLoS One. 2016 Sep 19;11(9):e0163237. doi: 10.1371/journal.pone.0163237. eCollection 2016.
9
Raised intensity phonation compromises vocal fold epithelial barrier integrity.
Laryngoscope. 2011 Feb;121(2):346-51. doi: 10.1002/lary.21364. Epub 2011 Jan 13.
10
Acute Nanoparticle Exposure to Vocal Folds: A Laboratory Study.
J Voice. 2017 Nov;31(6):662-668. doi: 10.1016/j.jvoice.2017.03.014. Epub 2017 Apr 21.

引用本文的文献

1
Scoping review of the relationship between xerostomia and voice quality.
Eur Arch Otorhinolaryngol. 2023 Jul;280(7):3087-3095. doi: 10.1007/s00405-023-07941-x. Epub 2023 Mar 30.
2
Epithelial response to vocal fold microflap injury in a preclinical model.
Laryngoscope. 2023 Feb;133(2):350-356. doi: 10.1002/lary.30169. Epub 2022 May 11.
3
Protein Substrate Alters Cell Physiology in Primary Culture of Vocal Fold Epithelial Cells.
Cells Tissues Organs. 2021;210(1):10-23. doi: 10.1159/000514200. Epub 2021 Apr 28.
4
Hydrogel-Supported, Engineered Model of Vocal Fold Epithelium.
ACS Biomater Sci Eng. 2021 Sep 13;7(9):4305-4317. doi: 10.1021/acsbiomaterials.0c01741. Epub 2021 Feb 26.
6
A Comparison of the Localization of Integral Membrane Proteins in Human and Rabbit Vocal Folds.
Laryngoscope. 2021 Apr;131(4):E1265-E1271. doi: 10.1002/lary.29243. Epub 2020 Nov 6.
7
Unraveling the molecular pathobiology of vocal fold systemic dehydration using an in vivo rabbit model.
PLoS One. 2020 Jul 31;15(7):e0236348. doi: 10.1371/journal.pone.0236348. eCollection 2020.
8
Immunological tolerance of low-risk HPV in recurrent respiratory papillomatosis.
Clin Exp Immunol. 2020 Feb;199(2):131-142. doi: 10.1111/cei.13387. Epub 2019 Oct 31.
9
Methodology for the establishment of primary porcine vocal fold epithelial cell cultures.
Laryngoscope. 2019 Oct;129(10):E355-E364. doi: 10.1002/lary.27909. Epub 2019 Mar 8.
10
Magnetic resonance imaging quantification of dehydration and rehydration in vocal fold tissue layers.
PLoS One. 2018 Dec 6;13(12):e0208763. doi: 10.1371/journal.pone.0208763. eCollection 2018.

本文引用的文献

1
Cyclic adenosine monophosphate regulation of ion transport in porcine vocal fold mucosae.
Laryngoscope. 2008 Aug;118(8):1511-7. doi: 10.1097/MLG.0b013e3181772d63.
2
E-cadherin but not beta-catenin expression is decreased in laryngeal biopsies from patients with laryngopharyngeal reflux.
Eur Arch Otorhinolaryngol. 2008 Aug;265(8):937-42. doi: 10.1007/s00405-007-0568-6. Epub 2008 Jan 5.
3
Vocal fold epithelial response to luminal osmotic perturbation.
J Speech Lang Hear Res. 2007 Aug;50(4):886-98. doi: 10.1044/1092-4388(2007/063).
4
Intestinal permeability and irritable bowel syndrome.
Neurogastroenterol Motil. 2007 Jul;19(7):545-52. doi: 10.1111/j.1365-2982.2007.00925.x.
6
Quantitative and comparative studies of the vocal fold extracellular matrix II: collagen.
Ann Otol Rhinol Laryngol. 2006 Mar;115(3):225-32. doi: 10.1177/000348940611500311.
7
The larynx as an immunological organ: immunological architecture in the pig as a large animal model.
Clin Exp Immunol. 2006 Jan;143(1):6-14. doi: 10.1111/j.1365-2249.2005.02950.x.
9
Dilated intercellular spaces and shunt permeability in nonerosive acid-damaged esophageal epithelium.
Am J Gastroenterol. 2004 Jan;99(1):13-22. doi: 10.1046/j.1572-0241.2003.04018.x.
10
Pathogenesis of gastroesophageal reflux disease.
Am J Med Sci. 2003 Nov;326(5):274-8. doi: 10.1097/00000441-200311000-00003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验