PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
J Theor Biol. 2010 May 7;264(1):136-42. doi: 10.1016/j.jtbi.2010.01.016. Epub 2010 Jan 21.
Evolutionary game dynamics of two-player asymmetric games in finite populations is studied. We consider two roles in the game, roles alpha and beta. alpha-players and beta-players interact and gain payoffs. The game is described by a pair of matrices, which is called bimatrix. One's payoff in the game is interpreted as its fecundity, thus strategies are subject to natural selection. In addition, strategies can randomly mutate to others. We formulate a stochastic evolutionary game dynamics of bimatrix games as a frequency-dependent Moran process with mutation. We analytically derive the stationary distribution of strategies under weak selection. Our result provides a criterion for equilibrium selection in general bimatrix games.
我们研究了有限群体中两人非对称博弈的进化博弈动态。在博弈中我们考虑两个角色,角色 alpha 和 beta。alpha 玩家和 beta 玩家相互作用并获得收益。游戏由一对矩阵描述,称为双矩阵。游戏中的一个人的收益被解释为其繁殖力,因此策略受到自然选择的影响。此外,策略可以随机突变为其他策略。我们将双矩阵游戏的随机演化博弈动态制定为具有突变的频率相关 Moran 过程。我们在弱选择下解析地推导出策略的稳定分布。我们的结果为一般双矩阵游戏中的均衡选择提供了一个判据。