Life Science Division, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
Curr Opin Struct Biol. 2010 Feb;20(1):128-37. doi: 10.1016/j.sbi.2009.12.015. Epub 2010 Jan 22.
Small-angle X-ray scattering (SAXS) is changing how we perceive biological structures, because it reveals dynamic macromolecular conformations and assemblies in solution. SAXS information captures thermodynamic ensembles, enhances static structures detailed by high-resolution methods, uncovers commonalities among diverse macromolecules, and helps define biological mechanisms. SAXS-based experiments on RNA riboswitches and ribozymes and on DNA-protein complexes including DNA-PK and p53 discover flexibilities that better define structure-function relationships. Furthermore, SAXS results suggest conformational variation is a general functional feature of macromolecules. Thus, accurate structural analyses will require a comprehensive approach that assesses both flexibility, as seen by SAXS, and detail, as determined by X-ray crystallography and NMR. Here, we review recent SAXS computational tools, technologies, and applications to nucleic acids and related structures.
小角 X 射线散射(SAXS)正在改变我们对生物结构的认知方式,因为它揭示了溶液中动态的大分子构象和组装。SAXS 信息捕获热力学集合体,增强了高分辨率方法详细描述的静态结构,揭示了不同大分子之间的共性,并有助于定义生物学机制。基于 SAXS 的实验研究 RNA 核糖开关和核酶以及包括 DNA-PK 和 p53 的 DNA-蛋白质复合物,发现了更好地定义结构-功能关系的柔韧性。此外,SAXS 结果表明构象变化是大分子的一般功能特征。因此,准确的结构分析将需要一种全面的方法,评估 SAXS 所见的柔韧性和 X 射线晶体学和 NMR 确定的细节。在这里,我们回顾了最近的 SAXS 计算工具、技术和在核酸及相关结构中的应用。