Suppr超能文献

运用 Porod-Debye 定律,通过小角散射(SAS)对灵活的、固有无规的生物大分子进行特征描述。

Characterizing flexible and intrinsically unstructured biological macromolecules by SAS using the Porod-Debye law.

机构信息

Life Sciences Division, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

出版信息

Biopolymers. 2011 Aug;95(8):559-71. doi: 10.1002/bip.21638. Epub 2011 Apr 20.

Abstract

Unstructured proteins, RNA or DNA components provide functionally important flexibility that is key to many macromolecular assemblies throughout cell biology. As objective, quantitative experimental measures of flexibility and disorder in solution are limited, small angle scattering (SAS), and in particular small angle X-ray scattering (SAXS), provides a critical technology to assess macromolecular flexibility as well as shape and assembly. Here, we consider the Porod-Debye law as a powerful tool for detecting biopolymer flexibility in SAS experiments. We show that the Porod-Debye region fundamentally describes the nature of the scattering intensity decay by capturing the information needed for distinguishing between folded and flexible particles. Particularly for comparative SAS experiments, application of the law, as described here, can distinguish between discrete conformational changes and localized flexibility relevant to molecular recognition and interaction networks. This approach aids insightful analyses of fully and partly flexible macromolecules that is more robust and conclusive than traditional Kratky analyses. Furthermore, we demonstrate for prototypic SAXS data that the ability to calculate particle density by the Porod-Debye criteria, as shown here, provides an objective quality assurance parameter that may prove of general use for SAXS modeling and validation.

摘要

无规蛋白、RNA 或 DNA 成分提供了功能上重要的灵活性,这是细胞生物学中许多大分子组装的关键。由于对溶液中灵活性和无序性的客观、定量实验测量受到限制,小角散射(SAS),特别是小角 X 射线散射(SAXS),为评估大分子灵活性以及形状和组装提供了关键技术。在这里,我们将 Porod-Debye 定律视为在 SAS 实验中检测生物聚合物灵活性的强大工具。我们表明,Porod-Debye 区域通过捕获区分折叠和灵活粒子所需的信息,从根本上描述了散射强度衰减的性质。特别是对于比较性 SAS 实验,这里描述的定律的应用可以区分离散构象变化和与分子识别和相互作用网络相关的局部灵活性。这种方法有助于对完全和部分灵活的大分子进行有洞察力的分析,比传统的 Kratky 分析更稳健、更具结论性。此外,我们用典型的 SAXS 数据证明,如这里所示,通过 Porod-Debye 标准计算粒子密度的能力提供了一个客观的质量保证参数,这可能对 SAXS 建模和验证具有普遍的用途。

相似文献

1
Characterizing flexible and intrinsically unstructured biological macromolecules by SAS using the Porod-Debye law.
Biopolymers. 2011 Aug;95(8):559-71. doi: 10.1002/bip.21638. Epub 2011 Apr 20.
2
Methods for using new conceptual tools and parameters to assess RNA structure by small-angle X-ray scattering.
Methods Enzymol. 2014;549:235-63. doi: 10.1016/B978-0-12-801122-5.00011-8.
3
A practical guide to small angle X-ray scattering (SAXS) of flexible and intrinsically disordered proteins.
FEBS Lett. 2015 Sep 14;589(19 Pt A):2570-7. doi: 10.1016/j.febslet.2015.08.027. Epub 2015 Aug 29.
4
Bridging the solution divide: comprehensive structural analyses of dynamic RNA, DNA, and protein assemblies by small-angle X-ray scattering.
Curr Opin Struct Biol. 2010 Feb;20(1):128-37. doi: 10.1016/j.sbi.2009.12.015. Epub 2010 Jan 22.
5
Structural Analyses of Intrinsically Disordered Proteins by Small-Angle X-Ray Scattering.
Methods Mol Biol. 2020;2141:249-269. doi: 10.1007/978-1-0716-0524-0_12.
7
Time resolved SAXS and RNA folding.
Biopolymers. 2011 Aug;95(8):543-9. doi: 10.1002/bip.21604. Epub 2011 Feb 15.
9
Structural analysis of flexible proteins in solution by small angle X-ray scattering combined with crystallography.
J Struct Biol. 2007 May;158(2):214-23. doi: 10.1016/j.jsb.2006.09.008. Epub 2006 Oct 27.
10
Structural analysis of intrinsically disordered proteins by small-angle X-ray scattering.
Mol Biosyst. 2012 Jan;8(1):151-67. doi: 10.1039/c1mb05275f. Epub 2011 Sep 22.

引用本文的文献

4
A general mechanism for initiating the bacterial general stress response.
Elife. 2025 Jun 6;13:RP100376. doi: 10.7554/eLife.100376.
7
Histone modification-driven structural remodeling unleashes DNMT3B in DNA methylation.
Sci Adv. 2025 Mar 28;11(13):eadu8116. doi: 10.1126/sciadv.adu8116. Epub 2025 Mar 26.
8
Nucleotide-specific RNA conformations and dynamics within ribonucleoprotein condensates.
bioRxiv. 2025 Feb 8:2025.02.06.636987. doi: 10.1101/2025.02.06.636987.
9
Multivalent nucleosome scaffolding by bromodomain and extraterminal domain tandem bromodomains.
J Biol Chem. 2025 Mar;301(3):108289. doi: 10.1016/j.jbc.2025.108289. Epub 2025 Feb 10.

本文引用的文献

1
, a program for rapid shape determination in small-angle scattering.
J Appl Crystallogr. 2009 Apr 1;42(Pt 2):342-346. doi: 10.1107/S0021889809000338. Epub 2009 Jan 24.
3
ABC ATPase signature helices in Rad50 link nucleotide state to Mre11 interface for DNA repair.
Nat Struct Mol Biol. 2011 Apr;18(4):423-31. doi: 10.1038/nsmb.2038. Epub 2011 Mar 27.
4
Single-molecule analysis of Mss116-mediated group II intron folding.
Nature. 2010 Oct 21;467(7318):935-9. doi: 10.1038/nature09422. Epub 2010 Oct 13.
5
Microbial metalloproteomes are largely uncharacterized.
Nature. 2010 Aug 5;466(7307):779-82. doi: 10.1038/nature09265. Epub 2010 Jul 18.
6
Free state conformational sampling of the SAM-I riboswitch aptamer domain.
Structure. 2010 Jul 14;18(7):787-97. doi: 10.1016/j.str.2010.04.006.
7
Human DNA ligase III recognizes DNA ends by dynamic switching between two DNA-bound states.
Biochemistry. 2010 Jul 27;49(29):6165-76. doi: 10.1021/bi100503w.
9
Structural dynamics in DNA damage signaling and repair.
Curr Opin Struct Biol. 2010 Jun;20(3):283-94. doi: 10.1016/j.sbi.2010.03.012. Epub 2010 May 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验