Suppr超能文献

精氨酸酶 II 通过减弱巨噬细胞中诱导型一氧化氮合酶的翻译来限制宿主对幽门螺杆菌的防御。

Arginase II restricts host defense to Helicobacter pylori by attenuating inducible nitric oxide synthase translation in macrophages.

机构信息

Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37240, USA.

出版信息

J Immunol. 2010 Mar 1;184(5):2572-82. doi: 10.4049/jimmunol.0902436. Epub 2010 Jan 22.

Abstract

Helicobacter pylori infection of the stomach causes peptic ulcer disease and gastric cancer. Despite eliciting a vigorous immune response, the bacterium persists for the life of the host. An important antimicrobial mechanism is the production of NO derived from inducible NO synthase (iNOS). We have reported that macrophages can kill H. pylori in vitro by an NO-dependent mechanism, but supraphysiologic levels of the iNOS substrate l-arginine are required. Because H. pylori induces arginase activity in macrophages, we determined if this restricts NO generation by reducing l-arginine availability. Inhibition of arginase with S-(2-boronoethyl)-l-cysteine (BEC) significantly enhanced NO generation in H. pylori-stimulated RAW 264.7 macrophages by enhancing iNOS protein translation but not iNOS mRNA levels. This effect resulted in increased killing of H. pylori that was attenuated with an NO scavenger. In contrast, inhibition of arginase in macrophages activated by the colitis-inducing bacterium Citrobacter rodentium increased NO without affecting iNOS levels. H. pylori upregulated levels of arginase II (Arg2) mRNA and protein, which localized to mitochondria, whereas arginase I was not induced. Increased iNOS protein and NO levels were also demonstrated by small interfering RNA knockdown of Arg2 and in peritoneal macrophages from C57BL/6 Arg2(-/-) mice. In H. pylori-infected mice, treatment with BEC or deletion of Arg2 increased iNOS protein levels and NO generation in gastric macrophages, but treatment of Arg2(-/-) mice with BEC had no additional effect. These studies implicate Arg2 in the immune evasion of H. pylori by causing intracellular depletion of l-arginine and thus reduction of NO-dependent bactericidal activity.

摘要

幽门螺杆菌感染胃部会导致消化性溃疡病和胃癌。尽管这种细菌会引发强烈的免疫反应,但它会在宿主的一生中持续存在。一种重要的抗菌机制是产生来自诱导型一氧化氮合酶(iNOS)的 NO。我们已经报道,巨噬细胞可以通过一种依赖于 NO 的机制在体外杀死幽门螺杆菌,但需要超生理水平的 iNOS 底物 l-精氨酸。由于幽门螺杆菌会诱导巨噬细胞中的精氨酸酶活性,我们确定这种活性是否会通过减少 l-精氨酸的可用性来限制 NO 的产生。用 S-(2-硼代乙基)-l-半胱氨酸(BEC)抑制精氨酸酶可显著增强幽门螺杆菌刺激的 RAW 264.7 巨噬细胞中的 NO 生成,这是通过增强 iNOS 蛋白翻译而不是 iNOS mRNA 水平实现的。这种效应导致幽门螺杆菌的杀伤增加,而用 NO 清除剂则会减弱这种效应。相比之下,在由结肠炎诱导细菌 Citrobacter rodentium 激活的巨噬细胞中抑制精氨酸酶会增加 NO 而不影响 iNOS 水平。幽门螺杆菌上调了 Arg2(精氨酸酶 II)mRNA 和蛋白的水平,这些蛋白定位于线粒体,而精氨酸酶 I 则未被诱导。Arg2 小干扰 RNA 敲低和 C57BL/6 Arg2(-/-)小鼠的腹腔巨噬细胞中也证明了 iNOS 蛋白和 NO 水平的增加。在感染幽门螺杆菌的小鼠中,用 BEC 治疗或删除 Arg2 会增加胃巨噬细胞中的 iNOS 蛋白水平和 NO 生成,但用 BEC 治疗 Arg2(-/-)小鼠则没有额外的效果。这些研究表明,Arg2 通过导致细胞内 l-精氨酸耗竭和减少依赖于 NO 的杀菌活性,从而导致幽门螺杆菌的免疫逃避。

相似文献

2
Immune evasion by Helicobacter pylori is mediated by induction of macrophage arginase II.
J Immunol. 2011 Mar 15;186(6):3632-41. doi: 10.4049/jimmunol.1003431. Epub 2011 Feb 4.
3
4
Polyamines Impair Immunity to Helicobacter pylori by Inhibiting L-Arginine Uptake Required for Nitric Oxide Production.
Gastroenterology. 2010 Nov;139(5):1686-98, 1698.e1-6. doi: 10.1053/j.gastro.2010.06.060. Epub 2010 Jul 1.
5
L-arginine availability regulates inducible nitric oxide synthase-dependent host defense against Helicobacter pylori.
Infect Immun. 2007 Sep;75(9):4305-15. doi: 10.1128/IAI.00578-07. Epub 2007 Jun 11.
6
Helicobacter pylori arginase inhibits nitric oxide production by eukaryotic cells: a strategy for bacterial survival.
Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13844-9. doi: 10.1073/pnas.241443798.
8
Helicobacter pylori induces macrophage apoptosis by activation of arginase II.
J Immunol. 2002 May 1;168(9):4692-700. doi: 10.4049/jimmunol.168.9.4692.
10
Protective role of arginase in a mouse model of colitis.
J Immunol. 2004 Aug 1;173(3):2109-17. doi: 10.4049/jimmunol.173.3.2109.

引用本文的文献

1
The immunoregulatory role of helper T cells in infection.
Front Immunol. 2025 Jun 9;16:1593727. doi: 10.3389/fimmu.2025.1593727. eCollection 2025.
2
Biochemistry, pharmacology, and in vivo function of arginases.
Pharmacol Rev. 2025 Jan;77(1):100015. doi: 10.1124/pharmrev.124.001271. Epub 2024 Nov 22.
3
Polyamines: the pivotal amines in influencing the tumor microenvironment.
Discov Oncol. 2024 May 18;15(1):173. doi: 10.1007/s12672-024-01034-9.
4
Strategies of in evading host innate and adaptive immunity: insights and prospects for therapeutic targeting.
Front Cell Infect Microbiol. 2024 Feb 26;14:1342913. doi: 10.3389/fcimb.2024.1342913. eCollection 2024.
5
Infiltration to infection: key virulence players of Helicobacter pylori pathogenicity.
Infection. 2024 Apr;52(2):345-384. doi: 10.1007/s15010-023-02159-9. Epub 2024 Jan 25.
6
Immune Biology and Persistence of Helicobacter pylori in Gastric Diseases.
Curr Top Microbiol Immunol. 2023;444:83-115. doi: 10.1007/978-3-031-47331-9_4.
7
Immune Response in Children Versus Adults.
Med Res Arch. 2022 Dec;10(12). doi: 10.18103/mra.v10i12.3370. Epub 2022 Nov 30.
9
10
Incorporating Immunotherapy in the Management of Gastric Cancer: Molecular and Clinical Implications.
Cancers (Basel). 2022 Sep 8;14(18):4378. doi: 10.3390/cancers14184378.

本文引用的文献

1
Toll-like receptor-induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens.
Nat Immunol. 2008 Dec;9(12):1399-406. doi: 10.1038/ni.1671. Epub 2008 Nov 2.
3
Host response to Helicobacter pylori infection before initiation of the adaptive immune response.
FEMS Immunol Med Microbiol. 2007 Dec;51(3):577-86. doi: 10.1111/j.1574-695X.2007.00338.x. Epub 2007 Oct 4.
5
L-arginine availability regulates inducible nitric oxide synthase-dependent host defense against Helicobacter pylori.
Infect Immun. 2007 Sep;75(9):4305-15. doi: 10.1128/IAI.00578-07. Epub 2007 Jun 11.
6
Intracellular, intercellular, and stromal invasion of gastric mucosa, preneoplastic lesions, and cancer by Helicobacter pylori.
Gastroenterology. 2007 Mar;132(3):1009-23. doi: 10.1053/j.gastro.2007.01.049. Epub 2007 Jan 31.
7
SabA is the H. pylori hemagglutinin and is polymorphic in binding to sialylated glycans.
PLoS Pathog. 2006 Oct;2(10):e110. doi: 10.1371/journal.ppat.0020110.
8
CD25+/Foxp3+ T cells regulate gastric inflammation and Helicobacter pylori colonization in vivo.
Gastroenterology. 2006 Aug;131(2):525-37. doi: 10.1053/j.gastro.2006.05.001.
9
Mitochondrial arginase II modulates nitric-oxide synthesis through nonfreely exchangeable L-arginine pools in human endothelial cells.
J Pharmacol Exp Ther. 2006 Sep;318(3):1368-74. doi: 10.1124/jpet.106.103747. Epub 2006 Jun 26.
10
Regulation of ornithine decarboxylase.
J Biol Chem. 2006 May 26;281(21):14529-32. doi: 10.1074/jbc.R500031200. Epub 2006 Feb 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验