IonGate Biosciences, Industriepark Hoechst, 65926 Frankfurt am Main, Germany.
Biochem J. 2010 Mar 15;427(1):151-9. doi: 10.1042/BJ20091380.
Vesicular V-ATPase (V-type H+-ATPase) and the plasma membrane-bound Na+/K+-ATPase are essential for the cycling of neurotransmitters at the synapse, but direct functional studies on their action in native surroundings are limited due to the poor accessibility via standard electrophysiological equipment. We performed SSM (solid supported membrane)-based electrophysiological analyses of synaptic vesicles and plasma membranes prepared from rat brains by sucrose-gradient fractionation. Acidification experiments revealed V-ATPase activity in fractions containing the vesicles but not in the plasma membrane fractions. For the SSM-based electrical measurements, the ATPases were activated by ATP concentration jumps. In vesicles, ATP-induced currents were inhibited by the V-ATPase-specific inhibitor BafA1 (bafilomycin A1) and by DIDS (4,4'-di-isothiocyanostilbene-2,2'-disulfonate). In plasma membranes, the currents were inhibited by the Na+/K+-ATPase inhibitor digitoxigenin. The distribution of the V-ATPase- and Na+/K+-ATPase-specific currents correlated with the distribution of vesicles and plasma membranes in the sucrose gradient. V-ATPase-specific currents depended on ATP with a K0.5 of 51+/-7 microM and were inhibited by ADP in a negatively co-operative manner with an IC50 of 1.2+/-0.6 microM. Activation of V-ATPase had stimulating effects on the chloride conductance in the vesicles. Low micromolar concentrations of DIDS fully inhibited the V-ATPase activity, whereas the chloride conductance was only partially affected. In contrast, NPPB [5-nitro-2-(3-phenylpropylamino)-benzoic acid] inhibited the chloride conductance but not the V-ATPase. The results presented describe electrical characteristics of synaptic V-ATPase and Na+/K+-ATPase in their native surroundings, and demonstrate the feasibility of the method for electrophysiological studies of transport proteins in native intracellular compartments and plasma membranes.
囊泡 V-ATPase(V 型 H+-ATPase)和质膜结合的 Na+/K+-ATPase 对突触中神经递质的循环至关重要,但由于通过标准电生理设备的可及性较差,直接进行其在天然环境中的功能研究受到限制。我们通过蔗糖梯度分级分离从大鼠脑中制备囊泡和质膜,并进行了基于 SSM(固体支持膜)的电生理学分析。酸化实验显示,V-ATPase 活性存在于含有囊泡的级分中,但不存在于质膜级分中。对于基于 SSM 的电测量,ATP 酶通过 ATP 浓度跃变被激活。在囊泡中,ATP 诱导的电流被 V-ATPase 特异性抑制剂 BafA1(巴弗霉素 A1)和 DIDS(4,4'-二异硫氰基二苯乙烯-2,2'-二磺酸盐)抑制。在质膜中,电流被 Na+/K+-ATPase 抑制剂地高辛抑制。V-ATPase 和 Na+/K+-ATPase 特异性电流的分布与蔗糖梯度中囊泡和质膜的分布相关。V-ATPase 特异性电流依赖于 ATP,K0.5 为 51+/-7 microM,并以负协同方式被 ADP 抑制,IC50 为 1.2+/-0.6 microM。V-ATPase 的激活对囊泡中的氯离子电导有刺激作用。低微摩尔浓度的 DIDS 完全抑制 V-ATPase 活性,而氯离子电导仅部分受到影响。相比之下,NPPB [5-硝基-2-(3-苯丙基氨基)-苯甲酸] 抑制氯离子电导但不抑制 V-ATPase。本研究描述了其天然环境中突触 V-ATPase 和 Na+/K+-ATPase 的电生理特性,并证明了该方法在天然细胞内区室和质膜中转运蛋白电生理学研究中的可行性。