Suppr超能文献

一种用于全自动化三维树突棘检测和中型棘突神经元分割的神经计算方法。

A neurocomputational method for fully automated 3D dendritic spine detection and segmentation of medium-sized spiny neurons.

机构信息

The Ting Tsung and Wei Fong Chao Center for Bioinformatics Research and Neurosciences Imaging, The Methodist Hospital Research Institute, Weill Cornell Medical College, Houston, TX 77030, USA.

出版信息

Neuroimage. 2010 May 1;50(4):1472-84. doi: 10.1016/j.neuroimage.2010.01.048. Epub 2010 Jan 25.

Abstract

Acquisition and quantitative analysis of high resolution images of dendritic spines are challenging tasks but are necessary for the study of animal models of neurological and psychiatric diseases. Currently available methods for automated dendritic spine detection are for the most part customized for 2D image slices, not volumetric 3D images. In this work, a fully automated method is proposed to detect and segment dendritic spines from 3D confocal microscopy images of medium-sized spiny neurons (MSNs). MSNs constitute a major neuronal population in striatum, and abnormalities in their function are associated with several neurological and psychiatric diseases. Such automated detection is critical for the development of new 3D neuronal assays which can be used for the screening of drugs and the studies of their therapeutic effects. The proposed method utilizes a generalized gradient vector flow (GGVF) with a new smoothing constraint and then detects feature points near the central regions of dendrites and spines. Then, the central regions are refined and separated based on eigen-analysis and multiple shape measurements. Finally, the spines are segmented in 3D space using the fast marching algorithm, taking the detected central regions of spines as initial points. The proposed method is compared with three popular existing methods for centerline extraction and also with manual results for dendritic spine detection in 3D space. The experimental results and comparisons show that the proposed method is able to automatically and accurately detect, segment, and quantitate dendritic spines in 3D images of MSNs.

摘要

获取和定量分析树突棘的高分辨率图像是具有挑战性的任务,但对于研究神经和精神疾病的动物模型是必要的。目前用于自动树突棘检测的方法在大多数情况下是针对 2D 图像切片定制的,而不是针对体积 3D 图像。在这项工作中,提出了一种全自动方法,用于从中型棘突神经元(MSNs)的 3D 共聚焦显微镜图像中检测和分割树突棘。MSNs 构成纹状体中的主要神经元群体,其功能异常与几种神经和精神疾病有关。这种自动检测对于开发新的 3D 神经元测定法至关重要,这些测定法可用于药物筛选和研究其治疗效果。所提出的方法利用具有新平滑约束的广义梯度矢量流(GGVF),然后检测树突和棘附近的特征点。然后,根据特征分析和多种形状测量对中心区域进行细化和分离。最后,使用快速行进算法在 3D 空间中分割棘,将检测到的棘的中心区域作为初始点。将所提出的方法与三种流行的现有中心线提取方法进行比较,并与手动方法在 3D 空间中检测树突棘的结果进行比较。实验结果和比较表明,所提出的方法能够自动且准确地检测、分割和定量 3D 图像中的 MSNs 树突棘。

相似文献

4
Impact of immersion oils and mounting media on the confocal imaging of dendritic spines.浸油和封片剂对树突棘共聚焦成像的影响。
J Neurosci Methods. 2015 Mar 15;242:106-11. doi: 10.1016/j.jneumeth.2015.01.014. Epub 2015 Jan 17.

引用本文的文献

3
A Deep Learning-Based Workflow for Dendritic Spine Segmentation.一种基于深度学习的树突棘分割工作流程。
Front Neuroanat. 2022 Mar 17;16:817903. doi: 10.3389/fnana.2022.817903. eCollection 2022.

本文引用的文献

1
Efficient Skeletonization of Volumetric Objects.体积物体的高效骨架化
IEEE Trans Vis Comput Graph. 1999 Jul;5(3):196-209. doi: 10.1109/2945.795212.
2
The glutamate homeostasis hypothesis of addiction.成瘾的谷氨酸稳态假说。
Nat Rev Neurosci. 2009 Aug;10(8):561-72. doi: 10.1038/nrn2515. Epub 2009 Jul 1.
3
Altered dendritic spine plasticity in cocaine-withdrawn rats.可卡因戒断大鼠树突棘可塑性改变。
J Neurosci. 2009 Mar 4;29(9):2876-84. doi: 10.1523/JNEUROSCI.5638-08.2009.
10
Curve-skeleton properties, applications, and algorithms.曲线骨架的性质、应用及算法。
IEEE Trans Vis Comput Graph. 2007 May-Jun;13(3):530-548. doi: 10.1109/TVCG.2007.1002.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验