Suppr超能文献

一种用于全自动化三维树突棘检测和中型棘突神经元分割的神经计算方法。

A neurocomputational method for fully automated 3D dendritic spine detection and segmentation of medium-sized spiny neurons.

机构信息

The Ting Tsung and Wei Fong Chao Center for Bioinformatics Research and Neurosciences Imaging, The Methodist Hospital Research Institute, Weill Cornell Medical College, Houston, TX 77030, USA.

出版信息

Neuroimage. 2010 May 1;50(4):1472-84. doi: 10.1016/j.neuroimage.2010.01.048. Epub 2010 Jan 25.

Abstract

Acquisition and quantitative analysis of high resolution images of dendritic spines are challenging tasks but are necessary for the study of animal models of neurological and psychiatric diseases. Currently available methods for automated dendritic spine detection are for the most part customized for 2D image slices, not volumetric 3D images. In this work, a fully automated method is proposed to detect and segment dendritic spines from 3D confocal microscopy images of medium-sized spiny neurons (MSNs). MSNs constitute a major neuronal population in striatum, and abnormalities in their function are associated with several neurological and psychiatric diseases. Such automated detection is critical for the development of new 3D neuronal assays which can be used for the screening of drugs and the studies of their therapeutic effects. The proposed method utilizes a generalized gradient vector flow (GGVF) with a new smoothing constraint and then detects feature points near the central regions of dendrites and spines. Then, the central regions are refined and separated based on eigen-analysis and multiple shape measurements. Finally, the spines are segmented in 3D space using the fast marching algorithm, taking the detected central regions of spines as initial points. The proposed method is compared with three popular existing methods for centerline extraction and also with manual results for dendritic spine detection in 3D space. The experimental results and comparisons show that the proposed method is able to automatically and accurately detect, segment, and quantitate dendritic spines in 3D images of MSNs.

摘要

获取和定量分析树突棘的高分辨率图像是具有挑战性的任务,但对于研究神经和精神疾病的动物模型是必要的。目前用于自动树突棘检测的方法在大多数情况下是针对 2D 图像切片定制的,而不是针对体积 3D 图像。在这项工作中,提出了一种全自动方法,用于从中型棘突神经元(MSNs)的 3D 共聚焦显微镜图像中检测和分割树突棘。MSNs 构成纹状体中的主要神经元群体,其功能异常与几种神经和精神疾病有关。这种自动检测对于开发新的 3D 神经元测定法至关重要,这些测定法可用于药物筛选和研究其治疗效果。所提出的方法利用具有新平滑约束的广义梯度矢量流(GGVF),然后检测树突和棘附近的特征点。然后,根据特征分析和多种形状测量对中心区域进行细化和分离。最后,使用快速行进算法在 3D 空间中分割棘,将检测到的棘的中心区域作为初始点。将所提出的方法与三种流行的现有中心线提取方法进行比较,并与手动方法在 3D 空间中检测树突棘的结果进行比较。实验结果和比较表明,所提出的方法能够自动且准确地检测、分割和定量 3D 图像中的 MSNs 树突棘。

相似文献

1
A neurocomputational method for fully automated 3D dendritic spine detection and segmentation of medium-sized spiny neurons.
Neuroimage. 2010 May 1;50(4):1472-84. doi: 10.1016/j.neuroimage.2010.01.048. Epub 2010 Jan 25.
3
Automated 3-D Detection of Dendritic Spines from In Vivo Two-Photon Image Stacks.
Neuroinformatics. 2017 Oct;15(4):303-319. doi: 10.1007/s12021-017-9332-2.
4
Impact of immersion oils and mounting media on the confocal imaging of dendritic spines.
J Neurosci Methods. 2015 Mar 15;242:106-11. doi: 10.1016/j.jneumeth.2015.01.014. Epub 2015 Jan 17.
5
A deconvolution method to improve automated 3D-analysis of dendritic spines: application to a mouse model of Huntington's disease.
Brain Struct Funct. 2012 Apr;217(2):421-34. doi: 10.1007/s00429-011-0340-y. Epub 2011 Aug 6.
6
An embryonic culture system for the investigation of striatal medium spiny neuron dendritic spine development and plasticity.
J Neurosci Methods. 2011 Aug 30;200(1):1-13. doi: 10.1016/j.jneumeth.2011.05.029. Epub 2011 Jun 13.
7
A surface-based 3-D dendritic spine detection approach from confocal microscopy images.
IEEE Trans Image Process. 2012 Mar;21(3):1223-30. doi: 10.1109/TIP.2011.2166973. Epub 2011 Sep 1.
9
Automated quantification of dendritic spine density and spine head diameter in medium spiny neurons of the nucleus accumbens.
Brain Struct Funct. 2008 Sep;213(1-2):149-57. doi: 10.1007/s00429-008-0184-2. Epub 2008 Jun 6.
10
Automated dendritic spine detection using convolutional neural networks on maximum intensity projected microscopic volumes.
J Neurosci Methods. 2018 Nov 1;309:25-34. doi: 10.1016/j.jneumeth.2018.08.019. Epub 2018 Aug 18.

引用本文的文献

1
Between neurons and networks: investigating mesoscale brain connectivity in neurological and psychiatric disorders.
Front Neurosci. 2024 Feb 20;18:1340345. doi: 10.3389/fnins.2024.1340345. eCollection 2024.
2
Utilizing 2D-region-based CNNs for automatic dendritic spine detection in 3D live cell imaging.
Sci Rep. 2023 Nov 22;13(1):20497. doi: 10.1038/s41598-023-47070-3.
3
A Deep Learning-Based Workflow for Dendritic Spine Segmentation.
Front Neuroanat. 2022 Mar 17;16:817903. doi: 10.3389/fnana.2022.817903. eCollection 2022.
4
Automated dendritic spine detection using convolutional neural networks on maximum intensity projected microscopic volumes.
J Neurosci Methods. 2018 Nov 1;309:25-34. doi: 10.1016/j.jneumeth.2018.08.019. Epub 2018 Aug 18.
5
An open-source tool for analysis and automatic identification of dendritic spines using machine learning.
PLoS One. 2018 Jul 5;13(7):e0199589. doi: 10.1371/journal.pone.0199589. eCollection 2018.
7
Automated spatio-temporal analysis of dendritic spines and related protein dynamics.
PLoS One. 2017 Aug 21;12(8):e0182958. doi: 10.1371/journal.pone.0182958. eCollection 2017.
8
Automated 3-D Detection of Dendritic Spines from In Vivo Two-Photon Image Stacks.
Neuroinformatics. 2017 Oct;15(4):303-319. doi: 10.1007/s12021-017-9332-2.
9
Loss and remodeling of striatal dendritic spines in Parkinson's disease: from homeostasis to maladaptive plasticity?
J Neural Transm (Vienna). 2018 Mar;125(3):431-447. doi: 10.1007/s00702-017-1735-6. Epub 2017 May 24.
10
Integration of multiscale dendritic spine structure and function data into systems biology models.
Front Neuroanat. 2014 Nov 12;8:130. doi: 10.3389/fnana.2014.00130. eCollection 2014.

本文引用的文献

1
Efficient Skeletonization of Volumetric Objects.
IEEE Trans Vis Comput Graph. 1999 Jul;5(3):196-209. doi: 10.1109/2945.795212.
2
The glutamate homeostasis hypothesis of addiction.
Nat Rev Neurosci. 2009 Aug;10(8):561-72. doi: 10.1038/nrn2515. Epub 2009 Jul 1.
3
Altered dendritic spine plasticity in cocaine-withdrawn rats.
J Neurosci. 2009 Mar 4;29(9):2876-84. doi: 10.1523/JNEUROSCI.5638-08.2009.
4
Methylphenidate-induced dendritic spine formation and DeltaFosB expression in nucleus accumbens.
Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):2915-20. doi: 10.1073/pnas.0813179106. Epub 2009 Feb 6.
5
Robust 3D reconstruction and identification of dendritic spines from optical microscopy imaging.
Med Image Anal. 2009 Feb;13(1):167-79. doi: 10.1016/j.media.2008.06.019. Epub 2008 Jul 24.
7
Spine dynamics and synapse remodeling during LTP and memory processes.
Prog Brain Res. 2008;169:199-207. doi: 10.1016/S0079-6123(07)00011-8.
8
Striatal plasticity and medium spiny neuron dendritic remodeling in parkinsonism.
Parkinsonism Relat Disord. 2007;13 Suppl 3(Suppl 3):S251-8. doi: 10.1016/S1353-8020(08)70012-9.
9
Dendritic spine detection using curvilinear structure detector and LDA classifier.
Neuroimage. 2007 Jun;36(2):346-60. doi: 10.1016/j.neuroimage.2007.02.044. Epub 2007 Mar 13.
10
Curve-skeleton properties, applications, and algorithms.
IEEE Trans Vis Comput Graph. 2007 May-Jun;13(3):530-548. doi: 10.1109/TVCG.2007.1002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验