Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA.
UDALL Center of Excellence for Parkinson's Disease, Emory University, Atlanta, GA, USA.
J Neural Transm (Vienna). 2018 Mar;125(3):431-447. doi: 10.1007/s00702-017-1735-6. Epub 2017 May 24.
In Parkinson's disease (PD) patients and animal models of PD, the progressive degeneration of the nigrostriatal dopamine (DA) projection leads to two major changes in the morphology of striatal projection neurons (SPNs), i.e., a profound loss of dendritic spines and the remodeling of axospinous glutamatergic synapses. Striatal spine loss is an early event tightly associated with the extent of striatal DA denervation, but not the severity of parkinsonian motor symptoms, suggesting that striatal spine pruning might be a form of homeostatic plasticity that compensates for the loss of striatal DA innervation and the resulting dysregulation of corticostriatal glutamatergic transmission. On the other hand, the remodeling of axospinous corticostriatal and thalamostriatal glutamatergic synapses might represent a form of late maladaptive plasticity that underlies changes in the strength and plastic properties of these afferents and the resulting increased firing and bursting activity of striatal SPNs in the parkinsonian state. There is also evidence that these abnormal synaptic connections might contribute to the pathophysiology of L-DOPA-induced dyskinesia. Despite the significant advances made in this field over the last thirty years, many controversial issues remain about the striatal SPN subtypes affected, the role of spine changes in the altered activity of SPNs in the parkinsonisn state, and the importance of striatal spine plasticity in the pathophysiology of L-DOPA-induced dyskinesia. In this review, we will examine the current state of knowledge of these issues, discuss the limitations of the animal models used to address some of these questions, and assess the relevance of data from animal models to the human-diseased condition.
在帕金森病(PD)患者和 PD 动物模型中,黑质纹状体多巴胺(DA)投射的进行性退化导致纹状体投射神经元(SPN)形态发生两大变化,即树突棘的深度缺失和轴棘突谷氨酸能突触的重塑。纹状体棘突丢失是与纹状体 DA 去神经支配程度密切相关的早期事件,但与帕金森运动症状的严重程度无关,这表明纹状体棘突修剪可能是一种代偿性的稳态可塑性,补偿纹状体 DA 支配的丧失和由此产生的皮质纹状体谷氨酸能传递的失调。另一方面,轴棘突皮质纹状体和丘脑纹状体谷氨酸能突触的重塑可能代表一种迟发性适应不良的可塑性,这种可塑性是这些传入神经的强度和可塑性变化的基础,也是帕金森状态下纹状体 SPN 放电和爆发活动增加的基础。也有证据表明,这些异常的突触连接可能有助于 L-DOPA 诱导的运动障碍的病理生理学。尽管在过去的三十年中,该领域取得了重大进展,但仍有许多有争议的问题有待解决,包括受影响的纹状体 SPN 亚型、棘突变化在帕金森状态下 SPN 活动改变中的作用,以及纹状体棘突可塑性在 L-DOPA 诱导的运动障碍的病理生理学中的重要性。在这篇综述中,我们将检查这些问题的当前知识状态,讨论用于解决其中一些问题的动物模型的局限性,并评估动物模型数据与人类疾病状况的相关性。