Suppr超能文献

体积物体的高效骨架化

Efficient Skeletonization of Volumetric Objects.

作者信息

Zhou Yong, Toga Arthur W

出版信息

IEEE Trans Vis Comput Graph. 1999 Jul;5(3):196-209. doi: 10.1109/2945.795212.

Abstract

Skeletonization promises to become a powerful tool for compact shape description, path planning, and other applications. However, current techniques can seldom efficiently process real, complicated 3D data sets, such as MRI and CT data of human organs. In this paper, we present an efficient voxel-coding based algorithm for Skeletonization of 3D voxelized objects. The skeletons are interpreted as connected centerlines. consisting of sequences of medial points of consecutive clusters. These centerlines are initially extracted as paths of voxels, followed by medial point replacement, refinement, smoothness, and connection operations. The voxel-coding techniques have been proposed for each of these operations in a uniform and systematic fashion. In addition to preserving basic connectivity and centeredness, the algorithm is characterized by straightforward computation, no sensitivity to object boundary complexity, explicit extraction of ready-to-parameterize and branch-controlled skeletons, and efficient object hole detection. These issues are rarely discussed in traditional methods. A range of 3D medical MRI and CT data sets were used for testing the algorithm, demonstrating its utility.

摘要

骨架化有望成为用于紧凑形状描述、路径规划及其他应用的强大工具。然而,当前技术很少能有效处理真实、复杂的三维数据集,比如人体器官的磁共振成像(MRI)和计算机断层扫描(CT)数据。在本文中,我们提出了一种基于体素编码的高效算法,用于对三维体素化对象进行骨架化处理。骨架被解释为相连的中心线,由连续聚类的中间点序列组成。这些中心线最初被提取为体素路径,随后进行中间点替换、细化、平滑及连接操作。针对这些操作中的每一项,均以统一且系统的方式提出了体素编码技术。除了保留基本的连通性和中心性外,该算法的特点还包括计算简单直接、对对象边界复杂性不敏感、能明确提取可直接参数化且可控制分支的骨架以及高效的对象孔洞检测。这些问题在传统方法中很少被讨论。使用了一系列三维医学MRI和CT数据集来测试该算法,证明了其效用。

相似文献

1
Efficient Skeletonization of Volumetric Objects.
IEEE Trans Vis Comput Graph. 1999 Jul;5(3):196-209. doi: 10.1109/2945.795212.
2
Turning Unorganized Points into Contours.
Proc Pac Conf Comput Graph Appl. 2000;2000:243-448. doi: 10.1109/PCCGA.2000.883947.
3
A Robust and Efficient Curve Skeletonization Algorithm for Tree-Like Objects Using Minimum Cost Paths.
Pattern Recognit Lett. 2016 Jun 1;76:32-40. doi: 10.1016/j.patrec.2015.04.002. Epub 2015 Apr 15.
4
3D shape-dependent thinning method for trabecular bone characterization.
Med Phys. 2012 Jan;39(1):168-78. doi: 10.1118/1.3664005.
5
Fuzzy Object Skeletonization: Theory, Algorithms, and Applications.
IEEE Trans Vis Comput Graph. 2018 Aug;24(8):2298-2314. doi: 10.1109/TVCG.2017.2738023. Epub 2017 Aug 10.
6
A new automatic skeletonization algorithm for 3D vascular volumes.
Conf Proc IEEE Eng Med Biol Soc. 2004;2004:1565-8. doi: 10.1109/IEMBS.2004.1403477.
7
Skeletonization of volumetric angiograms for display.
Comput Methods Biomech Biomed Engin. 2002 Oct;5(5):329-41. doi: 10.1080/1025584021000003874.
8
A New Approach of Arc Skeletonization for Tree-Like Objects Using Minimum Cost Path.
Proc IAPR Int Conf Pattern Recogn. 2014 Aug;2014:942-947. doi: 10.1109/ICPR.2014.172.
9
Edge-Supervised Linear Object Skeletonization for High-Speed Camera.
Sensors (Basel). 2023 Jun 19;23(12):5721. doi: 10.3390/s23125721.

引用本文的文献

1
Scalable robust graph and feature extraction for arbitrary vessel networks in large volumetric datasets.
BMC Bioinformatics. 2021 Jun 26;22(1):346. doi: 10.1186/s12859-021-04262-w.
2
Novel strategies for the characterization of cancellous bone morphology: Virtual isolation and analysis.
Am J Phys Anthropol. 2021 Aug;175(4):920-930. doi: 10.1002/ajpa.24272. Epub 2021 Apr 3.
3
Functional connectivity based parcellation of early visual cortices.
Hum Brain Mapp. 2018 Mar;39(3):1380-1390. doi: 10.1002/hbm.23926. Epub 2017 Dec 17.
4
Automated tracking and quantification of angiogenic vessel formation in 3D microfluidic devices.
PLoS One. 2017 Nov 14;12(11):e0186465. doi: 10.1371/journal.pone.0186465. eCollection 2017.
5
Automated 3-D Detection of Dendritic Spines from In Vivo Two-Photon Image Stacks.
Neuroinformatics. 2017 Oct;15(4):303-319. doi: 10.1007/s12021-017-9332-2.
6
Novel Computerized Method for Measurement of Retinal Vessel Diameters.
Biomedicines. 2017 Mar 27;5(2):12. doi: 10.3390/biomedicines5020012.
7
Automated Neuron Tracing Methods: An Updated Account.
Neuroinformatics. 2016 Oct;14(4):353-67. doi: 10.1007/s12021-016-9310-0.
8
Computer Vision Techniques for Transcatheter Intervention.
IEEE J Transl Eng Health Med. 2015 Jun 18;3:1900331. doi: 10.1109/JTEHM.2015.2446988. eCollection 2015.
9
A Review of the Quantification and Classification of Pigmented Skin Lesions: From Dedicated to Hand-Held Devices.
J Med Syst. 2015 Nov;39(11):177. doi: 10.1007/s10916-015-0354-8. Epub 2015 Sep 28.
10
Testing Foundations of Biological Scaling Theory Using Automated Measurements of Vascular Networks.
PLoS Comput Biol. 2015 Aug 28;11(8):e1004455. doi: 10.1371/journal.pcbi.1004455. eCollection 2015 Aug.

本文引用的文献

1
Extracting and Representing the Cortical Sulci.
IEEE Comput Graph Appl. 1999 May;19(3):49-55. doi: 10.1109/38.761550.
2
Turning Unorganized Points into Contours.
Proc Pac Conf Comput Graph Appl. 2000;2000:243-448. doi: 10.1109/PCCGA.2000.883947.
3
Automated flight path planning for virtual endoscopy.
Med Phys. 1998 May;25(5):629-37. doi: 10.1118/1.598244.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验