Tasdemir Kadim
Department of Computer Engineering, Yaşar University, Izmir 35100, Turkey.
IEEE Trans Neural Netw. 2010 Mar;21(3):520-6. doi: 10.1109/TNN.2010.2040200. Epub 2010 Jan 22.
The self-organizing map (SOM) is a powerful method for manifold learning because of producing a 2-D spatially ordered quantization of a higher dimensional data space on a rigid lattice and adaptively determining optimal approximation of the (unknown) density distribution of the data. However, a postprocessing visualization scheme is often required to capture the data manifold. A recent visualization scheme CONNvis, which is shown effective for clustering, uses a topology representing graph that shows detailed local data distribution within receptive fields. This brief proposes that this graph representation can be adapted to show local distances. The proposed graphs of local density and local distances provide tools to analyze the correlation between these two information and to merge them in various ways to achieve an advanced visualization. The brief also gives comparisons for several synthetic data sets.
自组织映射(SOM)是一种强大的流形学习方法,因为它能在刚性网格上对高维数据空间进行二维空间有序量化,并自适应地确定数据(未知)密度分布的最佳近似。然而,通常需要一种后处理可视化方案来捕捉数据流形。最近一种名为CONNvis的可视化方案在聚类方面显示出有效性,它使用一种表示图的拓扑结构来展示感受野内详细的局部数据分布。本简报提出,这种图表示可以进行调整以显示局部距离。所提出的局部密度图和局部距离图提供了工具,用于分析这两种信息之间的相关性,并以各种方式将它们合并以实现高级可视化。本简报还对几个合成数据集进行了比较。