Narwaria Manish, Lin Weisi
School of Computer Engineering, Nanyang Technological University, Singapore 639798, Singapore.
IEEE Trans Neural Netw. 2010 Mar;21(3):515-9. doi: 10.1109/TNN.2010.2040192. Epub 2010 Jan 22.
Objective image quality estimation is useful in many visual processing systems, and is difficult to perform in line with the human perception. The challenge lies in formulating effective features and fusing them into a single number to predict the quality score. In this brief, we propose a new approach to address the problem, with the use of singular vectors out of singular value decomposition (SVD) as features for quantifying major structural information in images and then support vector regression (SVR) for automatic prediction of image quality. The feature selection with singular vectors is novel and general for gauging structural changes in images as a good representative of visual quality variations. The use of SVR exploits the advantages of machine learning with the ability to learn complex data patterns for an effective and generalized mapping of features into a desired score, in contrast with the oft-utilized feature pooling process in the existing image quality estimators; this is to overcome the difficulty of model parameter determination for such a system to emulate the related, complex human visual system (HVS) characteristics. Experiments conducted with three independent databases confirm the effectiveness of the proposed system in predicting image quality with better alignment with the HVS's perception than the relevant existing work. The tests with untrained distortions and databases further demonstrate the robustness of the system and the importance of the feature selection.
客观图像质量评估在许多视觉处理系统中都很有用,但很难与人类感知保持一致。挑战在于制定有效的特征并将它们融合为一个单一数字以预测质量得分。在本简报中,我们提出了一种新方法来解决这个问题,即使用奇异值分解(SVD)中的奇异向量作为特征来量化图像中的主要结构信息,然后使用支持向量回归(SVR)来自动预测图像质量。用奇异向量进行特征选择对于衡量图像中的结构变化来说是新颖且通用的,因为它是视觉质量变化的良好代表。与现有图像质量估计器中经常使用的特征池化过程相比,SVR的使用利用了机器学习的优势,能够学习复杂的数据模式,以便将特征有效地、广义地映射为所需得分;这是为了克服此类系统在模拟相关复杂人类视觉系统(HVS)特征时模型参数确定的困难。使用三个独立数据库进行的实验证实了所提出系统在预测图像质量方面的有效性,与相关现有工作相比,它与HVS感知的一致性更好。对未训练的失真和数据库进行的测试进一步证明了该系统的鲁棒性以及特征选择的重要性。