Suppr超能文献

一种基于风格迁移的图像传感器快速图像质量评估方法

A Style Transfer-Based Fast Image Quality Assessment Method for Image Sensors.

作者信息

Xian Weizhi, Chen Bin, Yan Jielu, Wei Xuekai, Guo Kunyin, Fang Bin, Zhou Mingliang

机构信息

Chongqing Research Institute of Harbin Institute of Technology, Harbin Institute of Technology, Chongqing 401151, China.

Faculty of Computing, Harbin Institute of Technology, Harbin 150001, China.

出版信息

Sensors (Basel). 2025 Aug 18;25(16):5121. doi: 10.3390/s25165121.

Abstract

Accurate image quality evaluation is essential for optimizing sensor performance and enhancing the fidelity of visual data. The concept of "image style" encompasses the overall visual characteristics of an image, including elements such as colors, textures, shapes, lines, strokes, and other visual components. In this paper, we propose a novel full-reference image quality assessment (FR-IQA) method that leverages the principles of style transfer, which we call style- and content-based IQA (SCIQA). Our approach consists of three main steps. First, we employ a deep convolutional neural network (CNN) to decompose and represent images in the deep domain, capturing both low-level and high-level features. Second, we define a comprehensive deep perceptual distance metric between two images, taking into account both image content and style. This metric combines traditional content-based measures with style-based measures inspired by recent advances in neural style transfer. Finally, we formulate a perceptual optimization problem to determine the optimal parameters for the SCIQA model, which we solve via a convex optimization approach. Experimental results across multiple benchmark datasets (LIVE, CSIQ, TID2013, KADID-10k, and PIPAL) demonstrate that SCIQA outperforms state-of-the-art FR-IQA methods. Specifically, SCIQA achieves Pearson linear correlation coefficients (PLCC) of 0.956, 0.941, and 0.895 on the LIVE, CSIQ, and TID2013 datasets, respectively, outperforming traditional methods such as SSIM (PLCC: 0.847, 0.852, 0.665) and deep learning-based methods such as DISTS (PLCC: 0.924, 0.919, 0.855). The proposed method also demonstrates robust generalizability on the large-scale PIPAL dataset, achieving an SROCC of 0.702. Furthermore, SCIQA exhibits strong interpretability, exceptional prediction accuracy, and low computational complexity, making it a practical tool for real-world applications.

摘要

准确的图像质量评估对于优化传感器性能和提高视觉数据的保真度至关重要。“图像风格”的概念涵盖了图像的整体视觉特征,包括颜色、纹理、形状、线条、笔触和其他视觉组件等元素。在本文中,我们提出了一种新颖的全参考图像质量评估(FR-IQA)方法,该方法利用了风格迁移的原理,我们称之为基于风格和内容的IQA(SCIQA)。我们的方法包括三个主要步骤。首先,我们使用深度卷积神经网络(CNN)在深度域中分解和表示图像,捕获低级和高级特征。其次,我们定义了两个图像之间的综合深度感知距离度量,同时考虑图像内容和风格。该度量将传统的基于内容的度量与受神经风格迁移最新进展启发的基于风格的度量相结合。最后,我们制定了一个感知优化问题,以确定SCIQA模型的最佳参数,我们通过凸优化方法来解决该问题。在多个基准数据集(LIVE、CSIQ、TID2013、KADID-10k和PIPAL)上的实验结果表明,SCIQA优于现有的FR-IQA方法。具体而言,SCIQA在LIVE、CSIQ和TID2013数据集上分别实现了0.956、0.941和0.895的皮尔逊线性相关系数(PLCC),优于传统方法如SSIM(PLCC:0.847、0.852、0.665)和基于深度学习的方法如DISTS(PLCC:0.924、0.919、0.855)。所提出的方法在大规模PIPAL数据集上也表现出强大的泛化能力,实现了0.702的SROCC。此外,SCIQA具有很强的可解释性、出色的预测准确性和低计算复杂度,使其成为实际应用中的实用工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/809e/12389809/8687e38d9cfe/sensors-25-05121-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验