Suppr超能文献

利用果蝇进行突变亨廷顿蛋白聚集体形成的全基因组 RNA 干扰筛选以寻找修饰因子。

A genomewide RNA interference screen for modifiers of aggregates formation by mutant Huntingtin in Drosophila.

机构信息

Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.

出版信息

Genetics. 2010 Apr;184(4):1165-79. doi: 10.1534/genetics.109.112516. Epub 2010 Jan 25.

Abstract

Protein aggregates are a common pathological feature of most neurodegenerative diseases (NDs). Understanding their formation and regulation will help clarify their controversial roles in disease pathogenesis. To date, there have been few systematic studies of aggregates formation in Drosophila, a model organism that has been applied extensively in modeling NDs and screening for toxicity modifiers. We generated transgenic fly lines that express enhanced-GFP-tagged mutant Huntingtin (Htt) fragments with different lengths of polyglutamine (polyQ) tract and showed that these Htt mutants develop protein aggregates in a polyQ-length- and age-dependent manner in Drosophila. To identify central regulators of protein aggregation, we further generated stable Drosophila cell lines expressing these Htt mutants and also established a cell-based quantitative assay that allows automated measurement of aggregates within cells. We then performed a genomewide RNA interference screen for regulators of mutant Htt aggregation and isolated 126 genes involved in diverse cellular processes. Interestingly, although our screen focused only on mutant Htt aggregation, several of the identified candidates were known previously as toxicity modifiers of NDs. Moreover, modulating the in vivo activity of hsp110 (CG6603) or tra1, two hits from the screen, affects neurodegeneration in a dose-dependent manner in a Drosophila model of Huntington's disease. Thus, other aggregates regulators isolated in our screen may identify additional genes involved in the protein-folding pathway and neurotoxicity.

摘要

蛋白质聚集体是大多数神经退行性疾病(NDs)的常见病理特征。了解它们的形成和调节将有助于阐明它们在疾病发病机制中的争议作用。迄今为止,在果蝇中,对聚集体形成的系统研究很少,果蝇是一种广泛应用于模拟 NDs 和筛选毒性调节剂的模式生物。我们生成了表达具有不同长度聚谷氨酰胺(polyQ)片段的增强 GFP 标记突变亨廷顿(Htt)片段的转基因果蝇系,并表明这些 Htt 突变体以 polyQ 长度和年龄依赖性方式在果蝇中形成蛋白质聚集体。为了鉴定蛋白质聚集的中央调节剂,我们进一步生成了表达这些 Htt 突变体的稳定果蝇细胞系,并建立了一种基于细胞的定量测定法,允许自动测量细胞内的聚集体。然后,我们进行了全基因组 RNA 干扰筛选以鉴定突变 Htt 聚集的调节剂,并分离出 126 个涉及各种细胞过程的基因。有趣的是,尽管我们的筛选仅集中在突变 Htt 聚集上,但鉴定出的几个候选基因以前是 NDs 的毒性调节剂。此外,调节 hsp110(CG6603)或 tra1 的体内活性,这是筛选中的两个命中,以剂量依赖的方式影响亨廷顿病果蝇模型中的神经变性。因此,我们在筛选中分离出的其他聚集体调节剂可能会鉴定出更多参与蛋白质折叠途径和神经毒性的基因。

相似文献

1
A genomewide RNA interference screen for modifiers of aggregates formation by mutant Huntingtin in Drosophila.
Genetics. 2010 Apr;184(4):1165-79. doi: 10.1534/genetics.109.112516. Epub 2010 Jan 25.
2
RNAi screening in Drosophila cells identifies new modifiers of mutant huntingtin aggregation.
PLoS One. 2009 Sep 30;4(9):e7275. doi: 10.1371/journal.pone.0007275.
4
Inactivation of Drosophila Huntingtin affects long-term adult functioning and the pathogenesis of a Huntington's disease model.
Dis Model Mech. 2009 May-Jun;2(5-6):247-66. doi: 10.1242/dmm.000653. Epub 2009 Apr 6.
5
Allele-selective lowering of mutant HTT protein by HTT-LC3 linker compounds.
Nature. 2019 Nov;575(7781):203-209. doi: 10.1038/s41586-019-1722-1. Epub 2019 Oct 30.
6
Nmnat restores neuronal integrity by neutralizing mutant Huntingtin aggregate-induced progressive toxicity.
Proc Natl Acad Sci U S A. 2019 Sep 17;116(38):19165-19175. doi: 10.1073/pnas.1904563116. Epub 2019 Sep 4.
7
Huntingtin aggregation kinetics and their pathological role in a Drosophila Huntington's disease model.
Genetics. 2012 Feb;190(2):581-600. doi: 10.1534/genetics.111.133710. Epub 2011 Nov 17.
8
Large-scale RNA interference screening in mammalian cells identifies novel regulators of mutant huntingtin aggregation.
PLoS One. 2014 Apr 4;9(4):e93891. doi: 10.1371/journal.pone.0093891. eCollection 2014.
9
High-content chemical and RNAi screens for suppressors of neurotoxicity in a Huntington's disease model.
PLoS One. 2011;6(8):e23841. doi: 10.1371/journal.pone.0023841. Epub 2011 Aug 31.
10
Folding Landscape of Mutant Huntingtin Exon1: Diffusible Multimers, Oligomers and Fibrils, and No Detectable Monomer.
PLoS One. 2016 Jun 6;11(6):e0155747. doi: 10.1371/journal.pone.0155747. eCollection 2016.

引用本文的文献

3
Transgenic sensors reveal compartment-specific effects of aggregation-prone proteins on subcellular proteostasis during aging.
Cell Rep Methods. 2024 Oct 21;4(10):100875. doi: 10.1016/j.crmeth.2024.100875. Epub 2024 Oct 8.
4
Modeling neurodegenerative and neurodevelopmental disorders in the mushroom body.
Learn Mem. 2024 Jun 14;31(5). doi: 10.1101/lm.053816.123. Print 2024 May.
5
Mrj is a chaperone of the Hsp40 family that regulates Orb2 oligomerization and long-term memory in Drosophila.
PLoS Biol. 2024 Apr 22;22(4):e3002585. doi: 10.1371/journal.pbio.3002585. eCollection 2024 Apr.
6
A multi-layered network model identifies Akt1 as a common modulator of neurodegeneration.
Mol Syst Biol. 2023 Dec 6;19(12):e11801. doi: 10.15252/msb.202311801. Epub 2023 Nov 20.
8
Rapamycin reduces neuronal mutant huntingtin aggregation and ameliorates locomotor performance in .
Front Aging Neurosci. 2023 Sep 26;15:1223911. doi: 10.3389/fnagi.2023.1223911. eCollection 2023.
9
Functional unknomics: Systematic screening of conserved genes of unknown function.
PLoS Biol. 2023 Aug 8;21(8):e3002222. doi: 10.1371/journal.pbio.3002222. eCollection 2023 Aug.
10
as a model to study autophagy in neurodegenerative diseases induced by proteinopathies.
Front Neurosci. 2023 May 18;17:1082047. doi: 10.3389/fnins.2023.1082047. eCollection 2023.

本文引用的文献

1
RNAi screening in Drosophila cells identifies new modifiers of mutant huntingtin aggregation.
PLoS One. 2009 Sep 30;4(9):e7275. doi: 10.1371/journal.pone.0007275.
2
Progressive aggregation despite chaperone associations of a mutant SOD1-YFP in transgenic mice that develop ALS.
Proc Natl Acad Sci U S A. 2009 Feb 3;106(5):1392-7. doi: 10.1073/pnas.0813045106. Epub 2009 Jan 26.
4
Integrating the stress response: lessons for neurodegenerative diseases from C. elegans.
Trends Cell Biol. 2009 Feb;19(2):52-61. doi: 10.1016/j.tcb.2008.11.002. Epub 2008 Dec 26.
5
Structural basis for the cooperation of Hsp70 and Hsp110 chaperones in protein folding.
Cell. 2008 Jun 13;133(6):1068-79. doi: 10.1016/j.cell.2008.05.022.
6
Structure of the Hsp110:Hsc70 nucleotide exchange machine.
Mol Cell. 2008 Jul 25;31(2):232-43. doi: 10.1016/j.molcel.2008.05.006. Epub 2008 Jun 12.
7
Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging.
Genes Dev. 2008 Jun 1;22(11):1427-38. doi: 10.1101/gad.1657108.
8
Regulation of the cellular heat shock response in Caenorhabditis elegans by thermosensory neurons.
Science. 2008 May 9;320(5877):811-4. doi: 10.1126/science.1156093.
9
C. elegans model identifies genetic modifiers of alpha-synuclein inclusion formation during aging.
PLoS Genet. 2008 Mar 21;4(3):e1000027. doi: 10.1371/journal.pgen.1000027.
10
Hypothesis-based RNAi screening identifies neuroprotective genes in a Parkinson's disease model.
Proc Natl Acad Sci U S A. 2008 Jan 15;105(2):728-33. doi: 10.1073/pnas.0711018105. Epub 2008 Jan 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验