Suppr超能文献

贝叶斯推断因果中介效应使用二分类中介和结局的主分层分析。

Bayesian inference for causal mediation effects using principal stratification with dichotomous mediators and outcomes.

机构信息

Department of Biostatistics, University of Michigan, 1420 Washington Heights, Ann Arbor, MI 48109, USA.

出版信息

Biostatistics. 2010 Apr;11(2):353-72. doi: 10.1093/biostatistics/kxp060. Epub 2010 Jan 25.

Abstract

Most investigations in the social and health sciences aim to understand the directional or causal relationship between a treatment or risk factor and outcome. Given the multitude of pathways through which the treatment or risk factor may affect the outcome, there is also an interest in decomposing the effect of a treatment of risk factor into "direct" and "mediated" effects. For example, child's socioeconomic status (risk factor) may have a direct effect on the risk of death (outcome) and an effect that may be mediated through the adulthood socioeconomic status (mediator). Building on the potential outcome framework for causal inference, we develop a Bayesian approach for estimating direct and mediated effects in the context of a dichotomous mediator and dichotomous outcome, which is challenging as many parameters cannot be fully identified. We first define principal strata corresponding to the joint distribution of the observed and counterfactual values of the mediator, and define associate, dissociative, and mediated effects as functions of the differences in the mean outcome under differing treatment assignments within the principal strata. We then develop the likelihood properties and calculate nonparametric bounds of these causal effects assuming randomized treatment assignment. Because likelihood theory is not well developed for nonidentifiable parameters, we consider a Bayesian approach that allows the direct and mediated effects to be expressed in terms of the posterior distribution of the population parameters of interest. This range can be reduced by making further assumptions about the parameters that can be encoded in prior distribution assumptions. We perform sensitivity analyses by using several prior distributions that make weaker assumptions than monotonicity or the exclusion restriction. We consider an application that explores the mediating effects of adult poverty on the relationship between childhood poverty and risk of death.

摘要

大多数社会科学和健康科学的研究旨在了解治疗或风险因素与结果之间的方向或因果关系。鉴于治疗或风险因素可能通过多种途径影响结果,人们也有兴趣将治疗或风险因素的效果分解为“直接”和“中介”效果。例如,儿童的社会经济地位(风险因素)可能对死亡风险(结果)有直接影响,并且这种影响可能通过成年后的社会经济地位(中介)来介导。基于因果推理的潜在结果框架,我们开发了一种贝叶斯方法,用于估计二分类中介和二分类结果情况下的直接和中介效果,这是具有挑战性的,因为许多参数无法完全识别。我们首先定义与中介的观测值和反事实值的联合分布相对应的主要层,并将关联、分离和中介效应定义为主要层内不同治疗分配下平均结果差异的函数。然后,我们假设随机治疗分配,开发这些因果效应的似然性质并计算非参数界限。由于似然理论不适用于不可识别的参数,因此我们考虑贝叶斯方法,该方法允许直接和中介效应以感兴趣的总体参数的后验分布来表示。通过对可以用先验分布假设编码的参数做出进一步假设,可以缩小这个范围。我们通过使用比单调性或排除限制假设更弱的几种先验分布来进行敏感性分析。我们考虑了一个应用,该应用探讨了成年贫困对儿童贫困与死亡风险之间关系的中介作用。

相似文献

2
A refreshing account of principal stratification.对主分层的清晰阐述。
Int J Biostat. 2012;8(1). doi: 10.1515/1557-4679.1380.
9
Bayesian inference for the causal effect of mediation.中介因果效应的贝叶斯推断。
Biometrics. 2012 Dec;68(4):1028-36. doi: 10.1111/j.1541-0420.2012.01781.x. Epub 2012 Sep 24.

引用本文的文献

4
A Tutorial in Bayesian Potential Outcomes Mediation Analysis.贝叶斯潜在结果中介分析教程
Struct Equ Modeling. 2018;25(1):121-136. doi: 10.1080/10705511.2017.1342541. Epub 2017 Jul 25.
6
Best (but oft-forgotten) practices: mediation analysis.最佳(但常被遗忘)实践:中介分析。
Am J Clin Nutr. 2017 Jun;105(6):1259-1271. doi: 10.3945/ajcn.117.152546. Epub 2017 Apr 26.
7
Mediation analysis for count and zero-inflated count data.中介分析用于计数和零膨胀计数数据。
Stat Methods Med Res. 2018 Sep;27(9):2756-2774. doi: 10.1177/0962280216686131. Epub 2017 Jan 8.

本文引用的文献

2
Mediation analysis with principal stratification.采用主分层法的中介分析。
Stat Med. 2009 Mar 30;28(7):1108-30. doi: 10.1002/sim.3533.
3
Related causal frameworks for surrogate outcomes.替代结局的相关因果框架。
Biometrics. 2009 Jun;65(2):530-8. doi: 10.1111/j.1541-0420.2008.01106.x.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验