Suppr超能文献

聚类鼓励设计中因果机制的识别与估计:使用贝叶斯主分层法解析蚊帐问题

Identification and Estimation of Causal Mechanisms in Clustered Encouragement Designs: Disentangling Bed Nets using Bayesian Principal Stratification.

作者信息

Forastiere Laura, Mealli Fabrizia, VanderWeele Tyler J

机构信息

University of Florence.

Harvard School of Public Health.

出版信息

J Am Stat Assoc. 2016;111(514):510-525. doi: 10.1080/01621459.2015.1125788. Epub 2016 Aug 18.

Abstract

Exploration of causal mechanisms is often important for researchers and policymakers to understand how an intervention works and how it can be improved. This task can be crucial in clustered encouragement designs (CED). Encouragement design studies arise frequently when the treatment cannot be enforced because of ethical or practical constrains and an encouragement intervention (information campaigns, incentives, etc) is conceived with the purpose of increasing the uptake of the treatment of interest. By design, encouragements always entail the complication of non-compliance. Encouragements can also give rise to a variety of mechanisms, particularly when encouragement is assigned at cluster level. Social interactions among units within the same cluster can result in spillover effects. Disentangling the effect of encouragement through spillover effects from that through the enhancement of the treatment would give better insight into the intervention and it could be compelling for planning the scaling-up phase of the program. Building on previous works on CEDs and non-compliance, we use the principal stratification framework to define stratum-specific causal effects, that is, effects for specific latent subpopulations, defined by the joint potential compliance statuses under both encouragement conditions. We show how the latter stratum-specific causal effects are related to the decomposition commonly used in the literature and provide flexible homogeneity assumptions under which an extrapolation across principal strata allows one to disentangle the effects. Estimation of causal estimands can be performed with Bayesian inferential methods using hierarchical models to account for clustering. We illustrate the proposed methodology by analyzing a cluster randomized experiment implemented in Zambia and designed to evaluate the impact on malaria prevalence of an agricultural loan program intended to increase the bed net coverage. Farmer households assigned to the program could take advantage of a deferred payment and a discount in the purchase of new bed nets. Our analysis shows a lack of evidence of an effect of the offering of the program to a cluster of households through spillover effects, that is through a greater bed net coverage in the neighborhood.

摘要

探索因果机制对于研究人员和政策制定者理解一项干预措施如何发挥作用以及如何改进往往至关重要。在整群鼓励设计(CED)中,这项任务可能至关重要。当由于伦理或实际限制无法强制实施治疗,并且构思了一项鼓励干预措施(信息宣传活动、激励措施等)以提高对感兴趣治疗的采用率时,鼓励设计研究经常出现。从设计角度来看,鼓励措施总是会带来不依从的复杂性。鼓励措施还可能引发各种机制,特别是当在整群层面分配鼓励措施时。同一集群内各单位之间的社会互动可能导致溢出效应。将通过溢出效应产生的鼓励效果与通过增强治疗产生的效果区分开来,将能更好地洞察干预措施,并且对于规划项目的扩大推广阶段可能很有说服力。基于先前关于CED和不依从的研究,我们使用主分层框架来定义特定分层的因果效应,即针对由两种鼓励条件下的联合潜在依从状态所定义的特定潜在亚群体的效应。我们展示了后一种特定分层的因果效应如何与文献中常用的分解相关,并提供了灵活的同质性假设,在这些假设下跨主分层的外推可以使人们区分各种效应。因果估计量的估计可以使用贝叶斯推断方法和分层模型来进行,以考虑聚类情况。我们通过分析在赞比亚实施的一项整群随机试验来说明所提出的方法,该试验旨在评估一项旨在增加蚊帐覆盖率的农业贷款项目对疟疾流行率的影响。被分配到该项目的农户可以享受延期付款和购买新蚊帐的折扣。我们的分析表明,没有证据表明通过溢出效应,即通过邻里间更高的蚊帐覆盖率,向一组农户提供该项目会产生效果。

相似文献

3
Methods for clustered encouragement design studies with noncompliance and missing data.
Biostatistics. 2011 Apr;12(2):313-26. doi: 10.1093/biostatistics/kxq065. Epub 2010 Oct 25.
4
A refreshing account of principal stratification.
Int J Biostat. 2012;8(1). doi: 10.1515/1557-4679.1380.
5
Estimating Causal Effects in Trials Involving Multi-Treatment Arms Subject to Non-compliance: A Bayesian framework.
J R Stat Soc Ser C Appl Stat. 2010 May;59(3):513-531. doi: 10.1111/j.1467-9876.2009.00709.x.
8
Principal stratification with predictors of compliance for randomized trials with 2 active treatments.
Biostatistics. 2008 Apr;9(2):277-89. doi: 10.1093/biostatistics/kxm027. Epub 2007 Aug 6.
10
Sleeping arrangements and mass distribution of bed nets in six districts in central and northern Mozambique.
Trop Med Int Health. 2015 Dec;20(12):1685-95. doi: 10.1111/tmi.12596. Epub 2015 Sep 28.

引用本文的文献

1
CAUSAL HEALTH IMPACTS OF POWER PLANT EMISSION CONTROLS UNDER MODELED AND UNCERTAIN PHYSICAL PROCESS INTERFERENCE.
Ann Appl Stat. 2024 Dec;18(4):2753-2774. doi: 10.1214/24-aoas1904. Epub 2024 Oct 31.
2
4
An overview of propensity score matching methods for clustered data.
Stat Methods Med Res. 2023 Apr;32(4):641-655. doi: 10.1177/09622802221133556. Epub 2022 Nov 25.
7
Statistical Considerations for Embedded Pragmatic Clinical Trials in People Living with Dementia.
J Am Geriatr Soc. 2020 Jul;68 Suppl 2(Suppl 2):S68-S73. doi: 10.1111/jgs.16616.
9
A Tutorial in Bayesian Potential Outcomes Mediation Analysis.
Struct Equ Modeling. 2018;25(1):121-136. doi: 10.1080/10705511.2017.1342541. Epub 2017 Jul 25.
10
A Bayesian semiparametric latent variable approach to causal mediation.
Stat Med. 2018 Mar 30;37(7):1149-1161. doi: 10.1002/sim.7572. Epub 2017 Dec 18.

本文引用的文献

1
Comments: Should Principal Stratification Be Used to Study Mediational Processes?
J Res Educ Eff. 2012 Jul;5(3):245-249. doi: 10.1080/19345747.2012.688412.
2
Direct and indirect effects for neighborhood-based clustered and longitudinal data.
Sociol Methods Res. 2010 May 1;38(4):515-544. doi: 10.1177/0049124110366236.
4
A unification of mediation and interaction: a 4-way decomposition.
Epidemiology. 2014 Sep;25(5):749-61. doi: 10.1097/EDE.0000000000000121.
5
Mediation and spillover effects in group-randomized trials: a case study of the 4Rs educational intervention.
J Am Stat Assoc. 2013 Jun 1;108(502):469-482. doi: 10.1080/01621459.2013.779832.
7
8
A refreshing account of principal stratification.
Int J Biostat. 2012;8(1). doi: 10.1515/1557-4679.1380.
9
Principal stratification--a goal or a tool?
Int J Biostat. 2011 Mar 30;7(1):20. doi: 10.2202/1557-4679.1322.
10
A review of causal estimation of effects in mediation analyses.
Stat Methods Med Res. 2012 Feb;21(1):77-107. doi: 10.1177/0962280210391076. Epub 2010 Dec 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验