Suppr超能文献

贝叶斯潜在结果中介分析教程

A Tutorial in Bayesian Potential Outcomes Mediation Analysis.

作者信息

Miočević Milica, Gonzalez Oscar, Valente Matthew J, MacKinnon David P

机构信息

Department of Methodology and Statistics, Utrecht University.

Department of Psychology, Arizona State University.

出版信息

Struct Equ Modeling. 2018;25(1):121-136. doi: 10.1080/10705511.2017.1342541. Epub 2017 Jul 25.

Abstract

Statistical mediation analysis is used to investigate intermediate variables in the relation between independent and dependent variables. Causal interpretation of mediation analyses is challenging because randomization of subjects to levels of the independent variable does not rule out the possibility of unmeasured confounders of the mediator to outcome relation. Furthermore, commonly used frequentist methods for mediation analysis compute the probability of the data given the null hypothesis, which is not the probability of a hypothesis given the data as in Bayesian analysis. Under certain assumptions, applying the potential outcomes framework to mediation analysis allows for the computation of causal effects, and statistical mediation in the Bayesian framework gives indirect effects probabilistic interpretations. This tutorial combines causal inference and Bayesian methods for mediation analysis so the indirect and direct effects have both causal and probabilistic interpretations. Steps in Bayesian causal mediation analysis are shown in the application to an empirical example.

摘要

统计中介分析用于研究自变量和因变量之间的中间变量。中介分析的因果解释具有挑战性,因为将受试者随机分配到自变量的不同水平并不能排除中介变量与结果关系中未测量混杂因素的可能性。此外,常用的频率主义中介分析方法计算的是在零假设下数据的概率,这与贝叶斯分析中给定数据的假设概率不同。在某些假设下,将潜在结果框架应用于中介分析可以计算因果效应,并且贝叶斯框架中的统计中介给出了间接效应的概率解释。本教程将因果推断和贝叶斯方法结合用于中介分析,以便间接效应和直接效应都具有因果和概率解释。贝叶斯因果中介分析的步骤在一个实证例子的应用中展示。

相似文献

1
A Tutorial in Bayesian Potential Outcomes Mediation Analysis.贝叶斯潜在结果中介分析教程
Struct Equ Modeling. 2018;25(1):121-136. doi: 10.1080/10705511.2017.1342541. Epub 2017 Jul 25.
10
BayesGmed: An R-package for Bayesian causal mediation analysis.BayesGmed:一个用于贝叶斯因果中介分析的 R 包。
PLoS One. 2023 Jun 14;18(6):e0287037. doi: 10.1371/journal.pone.0287037. eCollection 2023.

引用本文的文献

7
Causal moderated mediation analysis: Methods and software.因果调节中介分析:方法与软件。
Behav Res Methods. 2024 Mar;56(3):1314-1334. doi: 10.3758/s13428-023-02095-4. Epub 2023 Oct 16.
9
BayesGmed: An R-package for Bayesian causal mediation analysis.BayesGmed:一个用于贝叶斯因果中介分析的 R 包。
PLoS One. 2023 Jun 14;18(6):e0287037. doi: 10.1371/journal.pone.0287037. eCollection 2023.

本文引用的文献

1
Power in Bayesian Mediation Analysis for Small Sample Research.小样本研究中贝叶斯中介分析的功效
Struct Equ Modeling. 2017;24(5):666-683. doi: 10.1080/10705511.2017.1312407. Epub 2017 Apr 25.
9
Causal mediation analysis with multiple causally non-ordered mediators.具有多个因果无序中介变量的因果中介分析。
Stat Methods Med Res. 2018 Jan;27(1):3-19. doi: 10.1177/0962280215615899. Epub 2015 Nov 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验