Suppr超能文献

Gamma-ray susceptibility of immature and mature hippocampal cultured cells.

作者信息

Song Myoung-Sub, Kim Joong-Sun, Yang Miyoung, Kim Sung-Ho, Kim Jong-Choon, Park Soo Hyun, Shin Taekyun, Moon Changjong

机构信息

College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju 500-757.

出版信息

J Vet Med Sci. 2010 May;72(5):605-9. doi: 10.1292/jvms.09-0553. Epub 2010 Jan 26.

Abstract

Ionizing radiation suppresses neurogenesis in the mammalian brain. This in vitro study compared the detrimental effect of acute gamma-irradiation on immature hippocampal cells with mature cells. Both rat immature (0.5 day in vitro (DIV)) and mature hippocampal cells (14 DIV) were irradiated with 0-4 Gy gamma-rays. Cell viability was analyzed by using a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay. DNA fragmentation study was performed by extracting intracellular DNA. Morphological features of apoptosis were characterized by 4',6-diamidine-2'-phenylindole, dihydrochloride (DAPI) staining. MTT assay revealed that the survival rate of immature hippocampal cells declined in a dose-dependent manner within the range of irradiation applied, but was not changed in mature cells. Intranucleosomal DNA fragmentation in a ladder like pattern was dose-dependently increased in immature cells, but not in mature cells. The number of apoptotic nuclei in immature cells increased significantly in a dose-dependent manner within the range of irradiation applied. Active caspase-3 and cleaved poly (ADP-ribose) polymerase (PARP) expressions in immature hippocampal cells at 6 hr after 2 Gy exposure were markedly higher than control levels. The significantly greater radiosensitivity of immature hippocampal cells than that of the mature cells, indicates that the susceptibility of such hippocampal cells depends on their maturation. In addition, gamma-irradiation may induce caspase-dependent apoptosis in immature hippocampal cells.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验