Rummel D, Augustin T, Küchenhoff H
Department of Statistics, Ludwig-Maximilians-University Munich, Munich, Germany.
Biometrics. 2010 Dec;66(4):1209-19. doi: 10.1111/j.1541-0420.2009.01382.x.
We introduce a correction for covariate measurement error in nonparametric regression applied to longitudinal binary data arising from a study on human sleep. The data have been surveyed to investigate the association of some hormonal levels and the probability of being asleep. The hormonal effect is modeled flexibly while we account for the error-prone measurement of its concentration in the blood and the longitudinal character of the data. We present a fully Bayesian treatment utilizing Markov chain Monte Carlo inference techniques, and also introduce block updating to improve sampling and computational performance in the binary case. Our model is partly inspired by the relevance vector machine with radial basis functions, where usually very few basis functions are automatically selected for fitting the data. In the proposed approach, we implement such data-driven complexity regulation by adopting the idea of Bayesian model averaging. Besides the general theory and the detailed sampling scheme, we also provide a simulation study for the Gaussian and the binary cases by comparing our method to the naive analysis ignoring measurement error. The results demonstrate a clear gain when using the proposed correction method, particularly for the Gaussian case with medium and large measurement error variances, even if the covariate model is misspecified.
我们针对应用于人类睡眠研究中产生的纵向二元数据的非参数回归中的协变量测量误差引入了一种校正方法。该数据已被调查以研究某些激素水平与入睡概率之间的关联。在考虑血液中激素浓度的易误差测量以及数据的纵向特征的同时,灵活地对激素效应进行建模。我们采用马尔可夫链蒙特卡罗推理技术进行全贝叶斯处理,并引入块更新以提高二元情况下的采样和计算性能。我们的模型部分受到具有径向基函数的相关向量机的启发,在相关向量机中通常会自动选择很少的基函数来拟合数据。在所提出的方法中,我们通过采用贝叶斯模型平均的思想来实现这种数据驱动的复杂度调节。除了一般理论和详细的采样方案外,我们还通过将我们的方法与忽略测量误差的朴素分析进行比较,对高斯和二元情况进行了模拟研究。结果表明,使用所提出的校正方法有明显的优势,特别是对于具有中等和大测量误差方差的高斯情况,即使协变量模型设定错误也是如此。