Suppr超能文献

灵活的贝叶斯分位数回归用于独立和聚类数据。

Flexible Bayesian quantile regression for independent and clustered data.

机构信息

Department of Statistics, North Carolina State University, Raleigh, NC 27695-8203, USA.

出版信息

Biostatistics. 2010 Apr;11(2):337-52. doi: 10.1093/biostatistics/kxp049. Epub 2009 Nov 30.

Abstract

Quantile regression has emerged as a useful supplement to ordinary mean regression. Traditional frequentist quantile regression makes very minimal assumptions on the form of the error distribution and thus is able to accommodate nonnormal errors, which are common in many applications. However, inference for these models is challenging, particularly for clustered or censored data. A Bayesian approach enables exact inference and is well suited to incorporate clustered, missing, or censored data. In this paper, we propose a flexible Bayesian quantile regression model. We assume that the error distribution is an infinite mixture of Gaussian densities subject to a stochastic constraint that enables inference on the quantile of interest. This method outperforms the traditional frequentist method under a wide array of simulated data models. We extend the proposed approach to analyze clustered data. Here, we differentiate between and develop conditional and marginal models for clustered data. We apply our methods to analyze a multipatient apnea duration data set.

摘要

分位数回归已成为普通均值回归的有用补充。传统的频率派分位数回归对误差分布的形式做出了非常少的假设,因此能够适应许多应用中常见的非正态误差。然而,这些模型的推断具有挑战性,特别是对于聚类或删失数据。贝叶斯方法可以实现精确推断,非常适合包含聚类、缺失或删失数据。在本文中,我们提出了一种灵活的贝叶斯分位数回归模型。我们假设误差分布是一个无限混合高斯密度的集合,受到一个随机约束的限制,该约束可以对感兴趣的分位数进行推断。这种方法在广泛的模拟数据模型下表现优于传统的频率派方法。我们将提出的方法扩展到分析聚类数据。在这里,我们为聚类数据区分并开发了条件和边缘模型。我们将我们的方法应用于分析多例呼吸暂停持续时间数据集。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验