Suppr超能文献

噬菌体在冷冻干燥过程中的稳定性。

Stabilization of bacteriophage during freeze drying.

机构信息

Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 27 Taylor St, Glasgow, Strathclyde G4 0NR, UK.

出版信息

Int J Pharm. 2010 Apr 15;389(1-2):168-75. doi: 10.1016/j.ijpharm.2010.01.034. Epub 2010 Jan 25.

Abstract

With preliminary clinical trials completed for the treatment of antibiotic resistant infections using bacteriophages, there is a need to develop pharmaceutically acceptable formulations. Lyophilization is an established technique for the storage of bacteriophage, but there is little consensus regarding drying cycles, additives and moisture content specific to phage. Here, the addition of sucrose or poly(ethylene glycol) 6000 yielded stable freeze-dried cakes only from high concentrations (0.5 M and 5%, respectively), with addition of bacteriophage otherwise causing collapse. Gelatin, which is added to storage media (a solution of salts), played no role in maintaining bacteriophage stability following lyophilization. A secondary drying cycle was most important for maintaining bacteriophage activity. The addition of high concentrations of PEG 6000 or sucrose generally caused a more rapid fall in bacteriophage stability, over the first 7-14 d, but thereafter residual activities for all phage formulations converged. There was no distinct change in the glass transition temperatures (T(g)) measured for the formulations containing the same additive. Imaging of cakes containing fluorescently labeled bacteriophage did not show gross aggregation or phase separation of bacteriophage during lyophilization. However, the moisture content of the cake did correlate with lytic activity, irrespective of the formulation, with a 4-6% moisture content proving optimal. We propose that residual moisture is followed during lyophilization of bacteriophage from minimal concentrations of bulking agent.

摘要

随着使用噬菌体治疗抗生素耐药感染的初步临床试验的完成,需要开发可接受的药物制剂。冷冻干燥是一种用于储存噬菌体的成熟技术,但对于特定于噬菌体的干燥周期、添加剂和水分含量,几乎没有共识。在这里,只有在高浓度(分别为 0.5 M 和 5%)时,添加蔗糖或聚乙二醇 6000 才能得到稳定的冻干饼,否则添加噬菌体会导致冻干饼坍塌。在冷冻干燥后,添加到储存介质(盐溶液)中的明胶对噬菌体稳定性的维持没有作用。二次干燥周期对于维持噬菌体活性最为重要。高浓度的 PEG 6000 或蔗糖的添加通常会导致噬菌体稳定性在最初的 7-14 天内更快地下降,但此后所有噬菌体制剂的剩余活性趋于一致。对于含有相同添加剂的制剂,测量的玻璃化转变温度(T(g))没有明显变化。含有荧光标记噬菌体的饼状物的成像显示,在冷冻干燥过程中,噬菌体没有明显的聚集或相分离。然而,无论制剂如何,蛋糕的水分含量都与溶菌活性相关,4-6%的水分含量被证明是最佳的。我们提出,在从最小浓度的赋形剂中冷冻干燥噬菌体时,应跟踪残留水分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验