Suppr超能文献

环孢素 A 诱导内皮细胞中酪氨酸 34 MnSOD 的硝化:线粒体超氧化物的作用。

Cyclosporine A-induced nitration of tyrosine 34 MnSOD in endothelial cells: role of mitochondrial superoxide.

机构信息

Departamento Medicina Celular y Molecular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain.

出版信息

Cardiovasc Res. 2010 Jul 15;87(2):356-65. doi: 10.1093/cvr/cvq028. Epub 2010 Jan 27.

Abstract

AIMS

Cyclosporine A (CsA) has represented a fundamental therapeutic weapon in immunosuppression for the past three decades. However, its clinical use is not devoid of side effects, among which hypertension and vascular injury represent a major drawback. Endothelial cells are able to generate reactive oxygen and nitrogen species upon exposure to CsA, including formation of peroxynitrite. This may result in endothelial cell toxicity and increased tyrosine nitration. We have now studied the subcellular origin of superoxide formation in endothelial cells treated with CsA and the biochemical consequences for the function of mitochondrial enzymes.

METHODS AND RESULTS

By using electron spin resonance and endothelial cells lacking functional mitochondria, we showed that superoxide anion is generated in mitochondria. This was associated with an effect of CsA on bioenergetic parameters: increased mitochondrial membrane potential and inhibition of cellular respiration. In addition, CsA inhibited the activity of the mitochondrial enzymes aconitase and manganese superoxide dismutase (MnSOD). The use of murine lung endothelial cells deficient in endothelial nitric oxide synthase (eNOS) and NOS/peroxynitrite inhibitors allowed us to establish that the presence of eNOS and concomitant NO synthesis and peroxynitrite formation were essential for CsA induced nitration and inhibition of MnSOD activity. As the latter has been shown to become inactivated by nitration, we sought to identify this modification by mass spectrometry analysis. We found that CsA induced specific MnSOD tyrosine 34 nitration both in the recombinant protein and in endothelial cells overexpressing MnSOD.

CONCLUSION

We propose that CsA induced endothelial damage may be related to increased mitochondrial superoxide formation and subsequent peroxynitrite-dependent nitroxidative damage, specifically targeting MnSOD. The inactivation of this key antioxidant enzyme by tyrosine nitration represents a pathophysiological cellular mechanism contributing to self-perpetuation and amplification of CsA-related vascular toxicity.

摘要

目的

环孢素 A(CsA)在过去三十年中一直是免疫抑制治疗的重要武器。然而,其临床应用并非没有副作用,其中高血压和血管损伤是主要缺点。内皮细胞在接触 CsA 时能够产生活性氧和氮物种,包括过氧亚硝酸盐的形成。这可能导致内皮细胞毒性和酪氨酸硝化增加。我们现在研究了 CsA 处理的内皮细胞中超氧化物形成的亚细胞起源及其对线粒体酶功能的生化后果。

方法和结果

通过使用电子自旋共振和缺乏功能性线粒体的内皮细胞,我们表明超氧阴离子在线粒体中生成。这与 CsA 对生物能学参数的影响有关:线粒体膜电位增加和细胞呼吸抑制。此外,CsA 抑制了线粒体酶顺乌头酸酶和锰超氧化物歧化酶(MnSOD)的活性。使用缺乏内皮一氧化氮合酶(eNOS)的小鼠肺内皮细胞和 NOS/过氧亚硝酸盐抑制剂,我们能够确定 eNOS 的存在以及伴随的 NO 合成和过氧亚硝酸盐形成对于 CsA 诱导的硝化和 MnSOD 活性抑制是必要的。由于后者已被证明因硝化而失活,我们试图通过质谱分析来鉴定这种修饰。我们发现 CsA 诱导了重组蛋白和过表达 MnSOD 的内皮细胞中 MnSOD 酪氨酸 34 的特异性硝化。

结论

我们提出,CsA 诱导的内皮损伤可能与线粒体中超氧化物形成的增加有关,随后是依赖过氧亚硝酸盐的硝化损伤,特别是针对 MnSOD。这种关键抗氧化酶的酪氨酸硝化失活代表了导致 CsA 相关血管毒性自我维持和放大的病理生理细胞机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验