INSERM, U773, Centre de Recherche Biomédicale Bichat Beaujon CRB3, Paris, France.
Antioxid Redox Signal. 2011 Dec 1;15(11):2837-54. doi: 10.1089/ars.2010.3713. Epub 2011 Jul 18.
Hepatic energy depletion has been described in severe sepsis, and lipopolysaccharide (LPS) has been shown to cause mitochondrial DNA (mtDNA) damage. To clarify the mechanisms of LPS-induced mtDNA damage and mitochondrial alterations, we treated wild-type (WT) or transgenic manganese superoxide dismutase-overerexpressing (MnSOD(+++)) mice with a single dose of LPS (5 mg/kg). In WT mice, LPS increased mitochondrial reactive oxygen species formation, hepatic inducible nitric oxide synthase (NOS) mRNA and protein, tumor necrosis factor-alpha, interleukin-1 beta, and high-mobility group protein B1 concentrations. Six to 48 h after LPS administration (5 mg/kg), liver mtDNA levels, respiratory complex I activity, and adenosine triphosphate (ATP) contents were decreased. In addition, LPS increased interferon-β concentration and decreased mitochondrial transcription factor A (Tfam) mRNA, Tfam protein, and mtDNA-encoded mRNAs. Morphological studies showed mild hepatic inflammation. The LPS (5 mg/kg)-induced mtDNA depletion, complex I inactivation, ATP depletion, and alanine aminotransferase increase were prevented in MnSOD(+++) mice or in WT mice cotreated with 1400W (a NOS inhibitor), (2-(2,2,6,6-tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl)triphenylphosphonium chloride, monohydrate (a superoxide scavenger) or uric acid (a peroxynitrite scavenger). The MnSOD overexpression delayed death in mice challenged by a higher, lethal dose of LPS (25 mg/kg). In conclusion, LPS administration damages mtDNA and alters mitochondrial function. The protective effects of MnSOD, NOS inhibitors, and superoxide or peroxynitrite scavengers point out a role of the superoxide anion reacting with NO to form mtDNA- and protein-damaging peroxynitrite. In addition to the acute damage caused by reactive species, decreased levels of mitochondrial transcripts contribute to mitochondrial dysfunction.
严重脓毒症可导致肝能量耗竭,脂多糖(LPS)已被证实可导致线粒体 DNA(mtDNA)损伤。为了阐明 LPS 诱导的 mtDNA 损伤和线粒体改变的机制,我们用单次剂量 LPS(5mg/kg)处理野生型(WT)或过表达锰超氧化物歧化酶的转基因(MnSOD(+++))小鼠。在 WT 小鼠中,LPS 增加了线粒体活性氧的形成、肝诱导型一氧化氮合酶(NOS)mRNA 和蛋白、肿瘤坏死因子-α、白细胞介素-1β和高迁移率族蛋白 B1 的浓度。LPS 给药后 6-48 小时(5mg/kg),肝 mtDNA 水平、呼吸复合物 I 活性和三磷酸腺苷(ATP)含量降低。此外,LPS 增加了干扰素-β浓度,降低了线粒体转录因子 A(Tfam)mRNA、Tfam 蛋白和 mtDNA 编码的 mRNAs。形态学研究显示轻度肝炎症。MnSOD(+++) 小鼠或用 NOS 抑制剂 1400W、超氧化物清除剂(2-(2,2,6,6-四甲基哌啶-1-氧-4-基氨基)-2-氧代乙基)三苯基膦氯化物一水合物或尿酸(过氧亚硝酸盐清除剂)预处理的 WT 小鼠可预防 LPS(5mg/kg)诱导的 mtDNA 耗竭、复合物 I 失活、ATP 耗竭和丙氨酸氨基转移酶升高。MnSOD 过表达延迟了接受更高致死剂量 LPS(25mg/kg)挑战的小鼠的死亡。总之,LPS 给药会损害 mtDNA 并改变线粒体功能。MnSOD、NOS 抑制剂以及超氧化物或过氧亚硝酸盐清除剂的保护作用表明超氧阴离子与 NO 反应形成 mtDNA 和蛋白损伤性过氧亚硝酸盐的作用。除了活性物质引起的急性损伤外,线粒体转录物水平的降低也导致了线粒体功能障碍。