Suppr超能文献

探究肌肉驱动加速的极限:来自牛蛙跳跃的启示。

Probing the limits to muscle-powered accelerations: lessons from jumping bullfrogs.

作者信息

Roberts Thomas J, Marsh Richard L

机构信息

Biology Department, Northeastern University, 414 Mugar, 360 Huntington Ave, Boston, MA 02115, USA.

出版信息

J Exp Biol. 2003 Aug;206(Pt 15):2567-80. doi: 10.1242/jeb.00452.

Abstract

The function of many muscles during natural movements is to accelerate a mass. We used a simple model containing the essential elements of this functional system to investigate which musculoskeletal features are important for increasing the mechanical work done in a muscle-powered acceleration. The muscle model consisted of a muscle-like actuator with frog hindlimb muscle properties, operating across a lever to accelerate a load. We tested this model in configurations with and without a series elastic element and with and without a variable mechanical advantage. When total muscle shortening was held constant at 30%, the model produced the most work when the muscle operated with a series elastic element and an effective mechanical advantage that increased throughout the contraction (31 J kg(-1) muscle vs 26.6 J kg(-1) muscle for the non-compliant, constant mechanical advantage configuration). We also compared the model output with the dynamics of jumping bullfrogs, measured by high-speed video analysis, and the length changes of the plantaris muscle, measured by sonomicrometry. This comparison revealed that the length, force and power trajectory of the body of jumping frogs could be accurately replicated by a model of a fully active muscle operating against an inertial load, but only if the model muscle included a series elastic element. Sonomicrometer measurements of the plantaris muscle revealed an unusual, biphasic pattern of shortening, with high muscle velocities early and late in the contraction, separated by a period of slow contraction. The model muscle produced this pattern of shortening only when an elastic element was included. These results demonstrate that an elastic element can increase the work output in a muscle-powered acceleration. Elastic elements uncouple muscle fiber shortening velocity from body movement to allow the muscle fibers to operate at slower shortening velocities and higher force outputs. A variable muscle mechanical advantage improves the effectiveness of elastic energy storage and recovery by providing an inertial catch mechanism. These results can explain the high power outputs observed in jumping frogs. More generally, our model suggests how the function of non-muscular elements of the musculoskeletal system enhances performance in muscle-powered accelerations.

摘要

在自然运动过程中,许多肌肉的功能是加速一个质量体。我们使用了一个包含该功能系统基本要素的简单模型,来研究哪些肌肉骨骼特征对于增加肌肉驱动加速过程中所做的机械功很重要。肌肉模型由一个具有青蛙后肢肌肉特性的类似肌肉的致动器组成,它通过一个杠杆来加速负载。我们在有和没有串联弹性元件、有和没有可变机械优势的配置下测试了这个模型。当总肌肉缩短量保持在30%不变时,当肌肉与串联弹性元件一起工作且在整个收缩过程中有效机械优势增加时,模型产生的功最多(对于非顺应性、恒定机械优势配置,为31 J kg⁻¹肌肉,而对于无串联弹性元件的情况为26.6 J kg⁻¹肌肉)。我们还将模型输出与通过高速视频分析测量的跳跃牛蛙的动力学以及通过声纳测量法测量的跖肌长度变化进行了比较。这种比较表明,跳跃青蛙身体的长度、力和功率轨迹可以通过一个对抗惯性负载运行的完全活跃肌肉的模型准确复制,但前提是模型肌肉包括一个串联弹性元件。跖肌的声纳测量显示出一种不寻常的双相缩短模式,在收缩早期和晚期肌肉速度较高,中间有一段缓慢收缩期。只有当包含弹性元件时,模型肌肉才会产生这种缩短模式。这些结果表明,弹性元件可以增加肌肉驱动加速过程中的功输出。弹性元件使肌肉纤维缩短速度与身体运动解耦,从而允许肌肉纤维以较慢的缩短速度和更高的力输出运行。可变的肌肉机械优势通过提供一种惯性捕捉机制,提高了弹性能量储存和恢复的效率。这些结果可以解释在跳跃青蛙中观察到的高功率输出。更一般地说,我们的模型表明了肌肉骨骼系统非肌肉元件的功能如何在肌肉驱动加速过程中提高性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验