Suppr超能文献

病毒感染细胞中组成独特的应激颗粒的稳定形成。

Stable formation of compositionally unique stress granules in virus-infected cells.

机构信息

University of Arizona College of Medicine-Phoenix, Department of Basic Medical Sciences, 425 N. Fifth Street, ABC1 Room 328, Phoenix, AZ 85004, USA.

出版信息

J Virol. 2010 Apr;84(7):3654-65. doi: 10.1128/JVI.01320-09. Epub 2010 Jan 27.

Abstract

Stress granules are sites of mRNA storage formed in response to a variety of stresses, including viral infections. Here, the mechanisms and consequences of stress granule formation during poliovirus infection were examined. The results indicate that stress granules containing T-cell-restricted intracellular antigen 1 (TIA-1) and mRNA are stably constituted in infected cells despite lacking intact RasGAP SH3-domain binding protein 1 (G3BP) and eukaryotic initiation factor 4G. Fluorescent in situ hybridization revealed that stress granules in infected cells do not contain significant amounts of viral positive-strand RNA. Infection does not prevent stress granule formation in response to heat shock, indicating that poliovirus does not block de novo stress granule formation. A mutant TIA-1 protein that prevents stress granule formation during oxidative stress also prevents formation in infected cells. However, stress granule formation during infection is more dependent upon ongoing transcription than is formation during oxidative stress or heat shock. Furthermore, Sam68 is recruited to stress granules in infected cells but not to stress granules formed in response to oxidative stress or heat shock. These results demonstrate that stress granule formation in poliovirus-infected cells utilizes a transcription-dependent pathway that results in the appearance of stable, compositionally unique stress granules.

摘要

应激颗粒是在多种应激条件下形成的 mRNA 储存场所,包括病毒感染。在这里,研究了脊髓灰质炎病毒感染过程中应激颗粒形成的机制和后果。结果表明,尽管缺乏完整的 RasGAP SH3 结构域结合蛋白 1(G3BP)和真核起始因子 4G,应激颗粒仍能在感染细胞中稳定形成,其中包含 T 细胞受限的细胞内抗原 1(TIA-1)和 mRNA。荧光原位杂交显示,感染细胞中的应激颗粒不含有大量的病毒正链 RNA。感染不会阻止热休克时应激颗粒的形成,表明脊髓灰质炎病毒不会阻止新形成的应激颗粒。一种在氧化应激过程中阻止应激颗粒形成的突变 TIA-1 蛋白也能阻止感染细胞中应激颗粒的形成。然而,与氧化应激或热休克相比,感染过程中应激颗粒的形成更依赖于正在进行的转录。此外,Sam68 被招募到感染细胞中的应激颗粒中,但不会被招募到应激颗粒中,这些应激颗粒是对氧化应激或热休克形成的反应。这些结果表明,脊髓灰质炎病毒感染细胞中的应激颗粒形成利用了一种依赖转录的途径,导致稳定、组成独特的应激颗粒的出现。

相似文献

1
Stable formation of compositionally unique stress granules in virus-infected cells.
J Virol. 2010 Apr;84(7):3654-65. doi: 10.1128/JVI.01320-09. Epub 2010 Jan 27.
2
Poliovirus unlinks TIA1 aggregation and mRNA stress granule formation.
J Virol. 2011 Dec;85(23):12442-54. doi: 10.1128/JVI.05888-11. Epub 2011 Sep 28.
3
Poliovirus infection induces the co-localization of cellular protein SRp20 with TIA-1, a cytoplasmic stress granule protein.
Virus Res. 2013 Sep;176(1-2):223-31. doi: 10.1016/j.virusres.2013.06.012. Epub 2013 Jul 2.
6
Herpes simplex virus 2 infection impacts stress granule accumulation.
J Virol. 2012 Aug;86(15):8119-30. doi: 10.1128/JVI.00313-12. Epub 2012 May 23.
7
Inhibition of cytoplasmic mRNA stress granule formation by a viral proteinase.
Cell Host Microbe. 2007 Nov 15;2(5):295-305. doi: 10.1016/j.chom.2007.08.006.
8
Eukaryotic initiation factor 2alpha-independent pathway of stress granule induction by the natural product pateamine A.
J Biol Chem. 2006 Oct 27;281(43):32870-8. doi: 10.1074/jbc.M606149200. Epub 2006 Sep 2.
9
Modulation of stress granules and P bodies during dicistrovirus infection.
J Virol. 2011 Feb;85(4):1439-51. doi: 10.1128/JVI.02220-10. Epub 2010 Nov 24.
10
Inhibition of HSF1 and SAFB Granule Formation Enhances Apoptosis Induced by Heat Stress.
Int J Mol Sci. 2021 May 7;22(9):4982. doi: 10.3390/ijms22094982.

引用本文的文献

2
Stress granules: potential therapeutic targets for infectious and inflammatory diseases.
Front Immunol. 2023 May 2;14:1145346. doi: 10.3389/fimmu.2023.1145346. eCollection 2023.
3
The game between host antiviral innate immunity and immune evasion strategies of senecavirus A - A cell biological perspective.
Front Immunol. 2022 Dec 22;13:1107173. doi: 10.3389/fimmu.2022.1107173. eCollection 2022.
4
A Proximity biotinylation assay with a host protein bait reveals multiple factors modulating enterovirus replication.
PLoS Pathog. 2022 Oct 28;18(10):e1010906. doi: 10.1371/journal.ppat.1010906. eCollection 2022 Oct.
5
A little less aggregation a little more replication: Viral manipulation of stress granules.
Wiley Interdiscip Rev RNA. 2023 Jan;14(1):e1741. doi: 10.1002/wrna.1741. Epub 2022 Jun 16.
6
Monitoring Virus-Induced Stress Granule Dynamics Using Long-Term Live-Cell Imaging.
Methods Mol Biol. 2022;2428:325-348. doi: 10.1007/978-1-0716-1975-9_20.
7
DNA Damage and Repair Deficiency in ALS/FTD-Associated Neurodegeneration: From Molecular Mechanisms to Therapeutic Implication.
Front Mol Neurosci. 2021 Dec 16;14:784361. doi: 10.3389/fnmol.2021.784361. eCollection 2021.
8
SARS-CoV-2 nucleocapsid protein interacts with immunoregulators and stress granules and phase separates to form liquid droplets.
FEBS Lett. 2021 Dec;595(23):2872-2896. doi: 10.1002/1873-3468.14229. Epub 2021 Nov 22.
10
Resveratrol and related stilbene derivatives induce stress granules with distinct clearance kinetics.
Mol Biol Cell. 2021 Nov 1;32(21):ar18. doi: 10.1091/mbc.E21-02-0066. Epub 2021 Aug 25.

本文引用的文献

2
Differential targeting of nuclear pore complex proteins in poliovirus-infected cells.
J Virol. 2008 Feb;82(4):1647-55. doi: 10.1128/JVI.01670-07. Epub 2007 Nov 28.
3
Rotavirus infection induces the phosphorylation of eIF2alpha but prevents the formation of stress granules.
J Virol. 2008 Feb;82(3):1496-504. doi: 10.1128/JVI.01779-07. Epub 2007 Nov 21.
4
Inhibition of cytoplasmic mRNA stress granule formation by a viral proteinase.
Cell Host Microbe. 2007 Nov 15;2(5):295-305. doi: 10.1016/j.chom.2007.08.006.
5
Mammalian stress granules and processing bodies.
Methods Enzymol. 2007;431:61-81. doi: 10.1016/S0076-6879(07)31005-7.
6
Cellular protein modification by poliovirus: the two faces of poly(rC)-binding protein.
J Virol. 2007 Sep;81(17):8919-32. doi: 10.1128/JVI.01013-07. Epub 2007 Jun 20.
9
Eukaryotic initiation factor 2alpha-independent pathway of stress granule induction by the natural product pateamine A.
J Biol Chem. 2006 Oct 27;281(43):32870-8. doi: 10.1074/jbc.M606149200. Epub 2006 Sep 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验