Suppr超能文献

刺激 IFN 基因是诱导鼠衣原体感染期间 IFN-β产生的关键。

Stimulator of IFN gene is critical for induction of IFN-beta during Chlamydia muridarum infection.

机构信息

Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.

出版信息

J Immunol. 2010 Mar 1;184(5):2551-60. doi: 10.4049/jimmunol.0903704. Epub 2010 Jan 27.

Abstract

Type I IFN signaling has recently been shown to be detrimental to the host during infection with Chlamydia muridarum in both mouse lung and female genital tract. However, the pattern recognition receptor and the signaling pathways involved in chlamydial-induced IFN-beta are unclear. Previous studies have demonstrated no role for TLR4 and a partial role for MyD88 in chlamydial-induced IFN-beta. In this study, we demonstrate that mouse macrophages lacking TLR3, TRIF, TLR7, or TLR9 individually or both TLR4 and MyD88, still induce IFN-beta equivalent to wild type controls, leading to the hypothesis that TLR-independent cytosolic pathogen receptor pathways are crucial for this response. Silencing nucleotide-binding oligomerization domain 1 in HeLa cells partially decreased chlamydial-induced IFN-beta. Independently, small interfering RNA-mediated knockdown of the stimulator of IFN gene (STING) protein in HeLa cells and mouse oviduct epithelial cells significantly decreased IFN-beta mRNA expression, suggesting a critical role for STING in chlamydial-induced IFN-beta induction. Conversely, silencing of mitochondria-associated antiviral signaling proteins and the Rig-I-like receptors, RIG-I, and melanoma differentiation associated protein 5, had no effect. In addition, induction of IFN-beta depended on the downstream transcription IFN regulatory factor 3, and on activation of NF-kappaB and MAPK p38. Finally, STING, an endoplasmic reticulum-resident protein, was found to localize in close proximity to the chlamydial inclusion membrane during infection. These results indicate that C. muridarum induces IFN-beta via stimulation of nucleotide-binding oligomerization domain 1 pathway, and TLR- and Rig-I-like receptor-independent pathways that require STING, culminating in activation of IFN regulatory factor 3, NF-kappaB, and p38 MAPK.

摘要

I 型干扰素信号通路在感染鼠型衣原体(Chlamydia muridarum)时对宿主有害,这一发现最近已得到证实,无论是在小鼠肺部还是女性生殖道中都是如此。然而,目前尚不清楚衣原体诱导 IFN-β 所涉及的模式识别受体和信号通路。先前的研究表明 TLR4 和 MyD88 在衣原体诱导 IFN-β中不起作用或仅发挥部分作用。在本研究中,我们发现 TLR3、TRIF、TLR7 和 TLR9 缺失的小鼠巨噬细胞,或 TLR4 和 MyD88 缺失的巨噬细胞,仍能诱导与野生型对照相当的 IFN-β,这导致我们提出了这样的假说,即 TLR 非依赖性胞质病原体受体通路对于这种反应至关重要。在 HeLa 细胞中沉默核苷酸结合寡聚化结构域 1(nucleotide-binding oligomerization domain 1,NOD1)部分降低了衣原体诱导的 IFN-β。独立地,HeLa 细胞和小鼠输卵管上皮细胞中干扰素基因刺激因子(stimulator of IFN gene,STING)蛋白的小干扰 RNA 介导的敲低显著降低了 IFN-β mRNA 的表达,这表明 STING 在衣原体诱导的 IFN-β诱导中具有关键作用。相反,线粒体相关抗病毒信号蛋白和 Rig-I 样受体 RIG-I 和黑色素瘤分化相关蛋白 5 的沉默没有影响。此外,IFN-β 的诱导依赖于下游转录因子 IFN 调节因子 3(IFN regulatory factor 3,IRF3),并依赖于 NF-κB 和 MAPK p38 的激活。最后,发现 STING(一种内质网驻留蛋白)在感染过程中与衣原体包涵体膜紧密接近。这些结果表明,C. muridarum 通过刺激 NOD1 途径和 TLR 和 Rig-I 样受体非依赖性途径诱导 IFN-β,这些途径需要 STING,最终激活 IRF3、NF-κB 和 p38 MAPK。

相似文献

1
Stimulator of IFN gene is critical for induction of IFN-beta during Chlamydia muridarum infection.
J Immunol. 2010 Mar 1;184(5):2551-60. doi: 10.4049/jimmunol.0903704. Epub 2010 Jan 27.
2
Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway.
Science. 2003 Aug 1;301(5633):640-3. doi: 10.1126/science.1087262. Epub 2003 Jul 10.
3
The Chlamydia muridarum-induced IFN-β response is TLR3-dependent in murine oviduct epithelial cells.
J Immunol. 2010 Dec 1;185(11):6689-97. doi: 10.4049/jimmunol.1001548. Epub 2010 Oct 25.
9
Toll-like receptor 3 mediates a more potent antiviral response than Toll-like receptor 4.
J Immunol. 2003 Apr 1;170(7):3565-71. doi: 10.4049/jimmunol.170.7.3565.
10

引用本文的文献

1
TLR2 and TLR4 bridge physiological and pathological inflammation in the reproductive system.
Commun Biol. 2025 Jul 5;8(1):1008. doi: 10.1038/s42003-025-08424-x.
2
Interferon-epsilon, an estrogen-induced type I interferon, is uniquely exploited by Neisseria gonorrhoeae via effects on sialic acid metabolism.
Cell Host Microbe. 2025 Jul 9;33(7):1133-1145.e4. doi: 10.1016/j.chom.2025.05.015. Epub 2025 Jun 9.
3
COPB1-knockdown induced type I interferon signaling activation inhibits intracellular proliferation.
Front Microbiol. 2025 Mar 6;16:1566239. doi: 10.3389/fmicb.2025.1566239. eCollection 2025.
5
STING dependent BAX-IRF3 signaling results in apoptosis during late-stage Coxiella burnetii infection.
Cell Death Dis. 2024 Mar 8;15(3):195. doi: 10.1038/s41419-024-06573-1.
6
Plasmid-mediated virulence in .
Front Cell Infect Microbiol. 2023 Aug 17;13:1251135. doi: 10.3389/fcimb.2023.1251135. eCollection 2023.
7
Regulation of cGAS Activity and Downstream Signaling.
Cells. 2022 Sep 8;11(18):2812. doi: 10.3390/cells11182812.
8
The Inclusion Membrane Protein CTL0390 Mediates Host Cell Exit via Lysis through STING Activation.
Infect Immun. 2022 Jun 16;90(6):e0019022. doi: 10.1128/iai.00190-22. Epub 2022 May 19.
9
Human genetic diversity regulating the locus confers increased cytokines in response to .
HGG Adv. 2021 Nov 25;3(1):100071. doi: 10.1016/j.xhgg.2021.100071. eCollection 2022 Jan 13.

本文引用的文献

1
Activation of innate immune antiviral responses by Nod2.
Nat Immunol. 2009 Oct;10(10):1073-80. doi: 10.1038/ni.1782. Epub 2009 Aug 23.
2
A host type I interferon response is induced by cytosolic sensing of the bacterial second messenger cyclic-di-GMP.
J Exp Med. 2009 Aug 31;206(9):1899-911. doi: 10.1084/jem.20082874. Epub 2009 Aug 3.
3
RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway.
Cell. 2009 Aug 7;138(3):576-91. doi: 10.1016/j.cell.2009.06.015. Epub 2009 Jul 23.
4
RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate.
Nat Immunol. 2009 Oct;10(10):1065-72. doi: 10.1038/ni.1779. Epub 2009 Jul 16.
5
ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization.
Proc Natl Acad Sci U S A. 2009 May 26;106(21):8653-8. doi: 10.1073/pnas.0900850106. Epub 2009 May 11.
6
Innate immunity: cytoplasmic DNA sensing by the AIM2 inflammasome.
Curr Biol. 2009 Mar 24;19(6):R262-5. doi: 10.1016/j.cub.2009.02.011.
7
Extracellular and intracellular pattern recognition receptors cooperate in the recognition of Helicobacter pylori.
Gastroenterology. 2009 Jun;136(7):2247-57. doi: 10.1053/j.gastro.2009.02.066. Epub 2009 Mar 6.
8
The TAK1-JNK cascade is required for IRF3 function in the innate immune response.
Cell Res. 2009 Apr;19(4):412-28. doi: 10.1038/cr.2009.8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验