Suppr超能文献

单体型等位基因类,用于检测正在进行的正选择。

Haplotype allelic classes for detecting ongoing positive selection.

机构信息

Bioinformatics Program, Department of Biochemistry, Université de Montréal, Montréal, Québec, Canada.

出版信息

BMC Bioinformatics. 2010 Jan 28;11:65. doi: 10.1186/1471-2105-11-65.

Abstract

BACKGROUND

Natural selection eliminates detrimental and favors advantageous phenotypes. This process leaves characteristic signatures in underlying genomic segments that can be recognized through deviations in allelic or haplotypic frequency spectra. To provide an identifiable signature of recent positive selection that can be detected by comparison with the background distribution, we introduced a new way of looking at genomic polymorphisms: haplotype allelic classes.

RESULTS

The model combines segregating sites and haplotypic information in order to reveal useful data characteristics. We developed a summary statistic, Svd, to compare the distribution of the haplotypes carrying the selected allele with the distribution of the remaining ones. Coalescence simulations are used to study the distributions under standard population models assuming neutrality, demographic scenarios and selection models. To test, in practice, haplotype allelic class performance and the derived statistic in capturing deviation from neutrality due to positive selection, we analyzed haplotypic variation in detail in the locus of lactase persistence in the three HapMap Phase II populations.

CONCLUSIONS

We showed that the Svd statistic is less sensitive than other tests to confounding factors such as demography or recombination. Our approach succeeds in identifying candidate loci, such as the lactase-persistence locus, as targets of strong positive selection and provides a new tool complementary to other tests to study natural selection in genomic data.

摘要

背景

自然选择消除有害的表型,有利于有利的表型。这个过程在潜在的基因组片段中留下了特征性的特征,可以通过等位基因或单倍型频率谱的偏差来识别。为了提供一个可识别的近期正选择的特征,可以通过与背景分布进行比较来检测,我们引入了一种观察基因组多态性的新方法:单倍型等位基因类。

结果

该模型结合了分离位点和单倍型信息,以揭示有用的数据特征。我们开发了一个汇总统计量 Svd,用于比较携带选择等位基因的单倍型的分布与其余单倍型的分布。并使用合并模拟来研究在假设中性、人口统计场景和选择模型下的分布。为了检验在实践中单倍型等位基因类的性能和衍生统计量在捕获由于正选择而导致的偏离中性的能力,我们详细分析了三个 HapMap 第二阶段人群中乳糖持续存在位点的单倍型变异。

结论

我们表明,Svd 统计量比其他测试对混杂因素(如人口统计学或重组)的敏感性更低。我们的方法成功地确定了候选基因座,如乳糖持续存在基因座,作为强正选择的目标,并提供了一种新的工具,与其他测试一起研究基因组数据中的自然选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6d1/2831848/43e131c99e39/1471-2105-11-65-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验