Charters P E, Macdonald R G, Polanyi J C
Appl Opt. 1971 Aug 1;10(8):1747-54. doi: 10.1364/AO.10.001747.
An earlier study [Chem. Phys. Lett. 1, 619 (1968)] concluded that the reaction H + O(3) ? OH + O(2) forms OH predominantly in the highest accessible vibrational levels, upsilon = 8 and 9. We have extended this earlier work (1) by using fourier transform spectroscopy which is capable of giving more precise values for the relative vibrational populations at low intensities, (2) by recording emission down to lower background pressures (1 x 10(-4) Torr), and (3) by treating the vessel walls so as to remove OHdagger (vibrationally excited OH in it ground (2)II electronic state) more effectively. This involved using a room temperature vessel coated with silica gel. Under these conditions (provided that the values available for the radiational lifetime of OHdagger are correct) vibrational relaxation of OHdagger should have been largely arrested. We conclude that the relative rate constants for formation of OHdagger in levels upsilon are k(upsilon = 6) < 0.4, k(upsilon = 7) asymptotically equal to 0.4, k(upsilon = 8) asymptotically equal to 0.8, and k(upsilon = 9) = 1.00.
一项早期研究[《化学物理快报》1, 619 (1968)]得出结论,反应H + O(3) → OH + O(2)形成的OH主要处于可达到的最高振动能级,即υ = 8和9。我们通过以下方式扩展了这项早期工作:(1)使用傅里叶变换光谱学,它能够在低强度下给出相对振动布居的更精确值;(2)记录低至更低背景压力(1×10⁻⁴托)下的发射;(3)处理容器壁以便更有效地去除OH†(处于其基态(²)Ⅱ电子态的振动激发态OH)。这包括使用涂有硅胶的室温容器。在这些条件下(假设可获得的OH†辐射寿命值是正确的),OH†的振动弛豫应该已基本停止。我们得出结论,在能级υ上形成OH†的相对速率常数为k(υ = 6) < 0.4,k(υ = 7)渐近等于0.4,k(υ = 8)渐近等于0.8,且k(υ = 9) = 1.00。