School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, PR China.
Langmuir. 2010 Mar 2;26(5):3194-202. doi: 10.1021/la903135k.
It is now becoming possible to control and tailor micro/nanoscale chemical structures with different geometrical patterns on various substrates to achieve so-called superhydrophobic surfaces, which show promising industrial applications. In spite of significant advances in preparation of such surfaces, to date the effects of surface patterns or geometries on superhydrophobicity have not been understood completely, in particular, in the theoretical aspect. It has therefore been a challenge to design optimal geometry for ideal superhydrophobic behavior. In this study, a trapezoid microtextured superhydrophobic surface has been thermodynamically analyzed using a 2-D model. Furthermore, based on the calculations of free energy (FE) and free energy barrier (FEB), the effects of all the geometrical parameters for the trapezoid microtexture on contact angle (CA) and contact angle hysteresis (CAH) have been investigated systematically. It is demonstrated that besides height, base angle plays a significant important role in equilibrium contact angle (ECA) and CAH; in particular, a critical base angle for the present geometrical system is necessary for the transition from noncomposite to composite states. Moreover, the trapezoid base width affects strongly various CAs; a small base width is necessary for the large ECA and the small CAH. However, the effects of trapezoid base spacing are considerably complex. For the above transition, a small base spacing is necessary, but decreasing base spacing can decrease the ECA only for the composite state and can increase CAH only for the noncomposite state. Based on the above findings, some fundamental principles for the design of optimal geometry of ideal superhydrophobic surfaces are therefore suggested, which are also consistent with the experimental observations and previous theoretical investigations.
现在已经可以在各种基底上控制和定制具有不同几何图案的微/纳米级化学结构,以实现所谓的超疏水表面,这种表面具有广阔的工业应用前景。尽管在制备这种表面方面已经取得了显著的进展,但迄今为止,表面图案或几何形状对超疏水性的影响还没有被完全理解,特别是在理论方面。因此,设计具有理想超疏水性的最佳几何形状一直是一个挑战。在这项研究中,使用二维模型对梯形微纹理超疏水表面进行了热力学分析。此外,基于自由能(FE)和自由能势垒(FEB)的计算,系统研究了梯形微结构的所有几何参数对接触角(CA)和接触角滞后(CAH)的影响。结果表明,除了高度之外,基底角在平衡接触角(ECA)和 CAH 中起着重要作用;特别是,对于目前的几何体系,存在一个临界基底角,这是从非复合状态到复合状态转变的必要条件。此外,梯形基底宽度强烈影响各种 CA;小的基底宽度对于大的 ECA 和小的 CAH 是必要的。然而,梯形基底间距的影响相当复杂。对于上述转变,小的基底间距是必要的,但是减小基底间距只能减小复合状态下的 ECA,并且只能增加非复合状态下的 CAH。基于上述发现,因此提出了设计理想超疏水表面最佳几何形状的一些基本原则,这些原则也与实验观察和先前的理论研究一致。