Suppr超能文献

分层结构超疏水表面润湿性的热力学分析。

Thermodynamic analysis on wetting behavior of hierarchical structured superhydrophobic surfaces.

机构信息

Faculty of Material and Photoelectronic Physics, Key Laboratory of Low Dimensional Materials & Application Technology (Ministry of Education), Xiangtan University, Hunan, Xiangtan 411105, People's Republic of China.

出版信息

Langmuir. 2011 May 17;27(10):6260-7. doi: 10.1021/la200028x. Epub 2011 Apr 15.

Abstract

Superhydrophobicity of biological surfaces has recently been studied intensively with the aim to design artificial surfaces. It has been revealed that nearly all of the superhydrophobic surfaces consist of the intrinsic hierarchical structures. However, the role of such structures has not been completely understood. In this study, different scales of hierarchical structures have been thermodynamically analyzed using a 2-D model. In particular, the free energy (FE) and free energy barrier (FEB) for the composite wetting states are calculated, and the effects of relative pillar height (h(r)) and relative pillar width (a(r)) on contact angle (CA) and contact angle hysteresis (CAH) have been investigated in detail. The results show that if the geometrical parameter ratio is the same (e.g., a:b:h = 2:2:1), the equilibrium CA for the composite of the three-, dual-, and single- scale roughness structures is 159.8°, 151.1°, and 138.6°, respectively. Furthermore, the nano- to microstructures of such surfaces can split a large FEB into many small ones and hence can decrease FEB; in particular, a hierarchical geometrical structure can lead to a hierarchical "FEB structure" (e.g., for a dual-scale roughness geometrical structure, there is also a dual-scale FEB structure). This is especially important for a droplet to overcome the large FEBs to reach a stable superhydrophobic state, which can lead to an improved self-cleaning property. Moreover, for extremely small droplets, the secondary or third structure (i.e., submicrostructure or nanostructure) can play a dominant role in resisting the droplets into troughs, so that a composite state can be always thermodynamically favorable for such a hierarchical structured system.

摘要

生物表面的超疏水性最近受到了广泛的研究,目的是设计人工表面。已经揭示出,几乎所有的超疏水表面都由内在的分级结构组成。然而,这种结构的作用还没有完全被理解。在这项研究中,使用二维模型对不同尺度的分级结构进行了热力学分析。特别是,计算了复合润湿状态的自由能(FE)和自由能势垒(FEB),并详细研究了相对支柱高度(h(r))和相对支柱宽度(a(r))对接触角(CA)和接触角滞后(CAH)的影响。结果表明,如果几何参数比相同(例如,a:b:h = 2:2:1),则三、双和单尺度粗糙度结构的复合平衡 CA 分别为 159.8°、151.1°和 138.6°。此外,这种表面的纳米到微米结构可以将大的 FEB 分裂成许多小的 FEB,从而降低 FEB;特别是,分级几何结构可以导致分级“FEB 结构”(例如,对于双尺度粗糙度几何结构,也存在双尺度 FEB 结构)。这对于液滴克服大的 FEB 以达到稳定的超疏水性状态非常重要,这可以导致改善的自清洁性能。此外,对于非常小的液滴,第二级或第三级结构(即亚微观结构或纳米结构)可以在抵抗液滴进入凹槽方面发挥主导作用,因此复合状态对于这种分级结构系统总是热力学有利的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验