Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA.
J Chem Phys. 2010 Jan 28;132(4):044901. doi: 10.1063/1.3276458.
Normal alkanes have a simple molecular structure, but display a surprising variety of ordered phases, including an orthorhombic crystal, followed on heating by two partially ordered rotator phases RI and RII. These phases are interesting both because of the weakly first-order transitions that separate them, and because rotator phases are implicated in the nucleation of crystals in polyethylene. To understand this interesting and technologically important phenomenon, a clear picture of the rotator phase is essential. We conducted all-atom simulations of pure C(23) and mixed C(21)-C(23) normal alkanes. Among potentials we tried, only Flexible Williams gave good agreement with the experimental sequence of phases and transition temperatures. Physical properties of the simulated phases, including lattice dimensions and transition entropy between orthorhombic and rotator RII phase are in good agreement with experiment. We define order parameters for investigating pretransitional fluctuations in RI and RII phases; we observed only very short-range correlations in these phases, but slower temperature scans may be necessary to properly investigate these weakly first-order transitions.
正构烷烃具有简单的分子结构,但却表现出惊人的多种有序相,包括正交晶体,加热后依次出现两个部分有序的旋转相 RI 和 RII。这些相之所以有趣,不仅是因为它们之间的弱一级相变,还因为旋转相与聚乙烯中晶体成核有关。为了理解这一有趣且具有重要技术意义的现象,对旋转相有一个清晰的认识是必不可少的。我们对纯 C(23)和混合 C(21)-C(23)正构烷烃进行了全原子模拟。在所尝试的各种势中,只有灵活的 Williams 势与实验中相和转变温度的顺序很好地吻合。模拟相的物理性质,包括晶格尺寸和正交相和旋转相 RII 之间的转变熵,与实验结果非常吻合。我们定义了用于研究 RI 和 RII 相预相变涨落的序参量;我们只在这些相中观察到非常短程相关,但可能需要较慢的温度扫描来正确研究这些弱一级相变。