Suppr超能文献

斯氏按蚊转基因品系接受定点整合的比较适合度评估

Comparative fitness assessment of Anopheles stephensi transgenic lines receptive to site-specific integration.

机构信息

Program in Public Health, University of California, Irvine, CA 92697-3900, USA.

出版信息

Insect Mol Biol. 2010 Apr;19(2):263-9. doi: 10.1111/j.1365-2583.2009.00986.x. Epub 2010 Jan 24.

Abstract

Genetically modified mosquitoes that are unable to transmit pathogens offer opportunities for controlling vector-borne diseases such as malaria and dengue. Site-specific gene recombination technologies are advantageous in the development of these insects because antipathogen effector genes can be inserted at integration sites in the genome that cause the least alteration in mosquito fitness. Here we describe Anopheles stephensi transgenic lines containing phi C31 attP'docking' sites linked to a fluorescent marker gene. Chromosomal insertion sites were determined and life-table parameters were assessed for transgenic mosquitoes of each line. No significant differences in fitness between the transgenic and nontransgenic mosquitoes were detected in this study. These transgenic lines are suitable for future site-specific integrations of antiparasite transgenes into the attP sites.

摘要

无法传播病原体的转基因蚊子为控制疟疾和登革热等媒介传播疾病提供了机会。 基因定点重组技术在这些昆虫的发展中具有优势,因为抗病原体效应基因可以插入基因组中的整合位点,从而对蚊子的适应性造成最小的改变。 在这里,我们描述了含有 phi C31 attP“对接”位点的转基因 Anopheles stephensi 品系,该位点与荧光标记基因相连。 确定了染色体插入位点,并评估了每条品系转基因蚊子的生命表参数。 在这项研究中,未检测到转基因蚊子与非转基因蚊子在适应性方面有显着差异。 这些转基因品系适合将来将寄生虫转基因进行基因定点整合到 attP 位点。

相似文献

1
Comparative fitness assessment of Anopheles stephensi transgenic lines receptive to site-specific integration.
Insect Mol Biol. 2010 Apr;19(2):263-9. doi: 10.1111/j.1365-2583.2009.00986.x. Epub 2010 Jan 24.
2
Fitness of anopheline mosquitoes expressing transgenes that inhibit Plasmodium development.
Genetics. 2004 Mar;166(3):1337-41. doi: 10.1534/genetics.166.3.1337.
3
Impact of genetic manipulation on the fitness of Anopheles stephensi mosquitoes.
Science. 2003 Feb 21;299(5610):1225-7. doi: 10.1126/science.1081453.
4
Exogenous gypsy insulator sequences modulate transgene expression in the malaria vector mosquito, Anopheles stephensi.
Proc Natl Acad Sci U S A. 2013 Apr 30;110(18):7176-81. doi: 10.1073/pnas.1304722110. Epub 2013 Apr 12.
8
Post-integration behavior of a Minos transposon in the malaria mosquito Anopheles stephensi.
Mol Genet Genomics. 2007 Nov;278(5):575-84. doi: 10.1007/s00438-007-0274-5. Epub 2007 Jul 19.
10
Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi.
Proc Natl Acad Sci U S A. 2015 Dec 8;112(49):E6736-43. doi: 10.1073/pnas.1521077112. Epub 2015 Nov 23.

引用本文的文献

1
History of Mosquito Transgenesis: A Perspective in Review.
Methods Mol Biol. 2025;2935:311-333. doi: 10.1007/978-1-0716-4583-3_14.
2
.
Wellcome Open Res. 2025 Feb 5;9:623. doi: 10.12688/wellcomeopenres.23229.2. eCollection 2024.
3
Improved Transformation with Capped Transposase mRNA in Pest Insects.
Int J Mol Sci. 2023 Oct 13;24(20):15155. doi: 10.3390/ijms242015155.
4
Dual effector population modification gene-drive strains of the African malaria mosquitoes, and .
Proc Natl Acad Sci U S A. 2023 Jul 18;120(29):e2221118120. doi: 10.1073/pnas.2221118120. Epub 2023 Jul 10.
5
Mathematical modeling of the performance of wild and transgenic mosquitoes in malaria transmission.
PLoS One. 2023 Apr 28;18(4):e0285000. doi: 10.1371/journal.pone.0285000. eCollection 2023.
6
Transgene-induced cell death following dengue-2 virus infection in Aedes aegypti.
Sci Rep. 2023 Apr 12;13(1):5958. doi: 10.1038/s41598-023-32895-9.
7
8
Next-generation tools to control biting midge populations and reduce pathogen transmission.
Parasit Vectors. 2021 Jan 7;14(1):31. doi: 10.1186/s13071-020-04524-1.
10
Experimental population modification of the malaria vector mosquito, Anopheles stephensi.
PLoS Genet. 2019 Dec 19;15(12):e1008440. doi: 10.1371/journal.pgen.1008440. eCollection 2019 Dec.

本文引用的文献

2
Malaria control with transgenic mosquitoes.
PLoS Med. 2009 Feb 10;6(2):e20. doi: 10.1371/journal.pmed.1000020.
3
Molecular genetic manipulation of vector mosquitoes.
Cell Host Microbe. 2008 Nov 13;4(5):417-23. doi: 10.1016/j.chom.2008.09.002.
4
Full-Malaria/Parasites and Full-Arthropods: databases of full-length cDNAs of parasites and arthropods, update 2009.
Nucleic Acids Res. 2009 Jan;37(Database issue):D520-5. doi: 10.1093/nar/gkn856. Epub 2008 Nov 4.
5
Injection of An. stephensi embryos to generate malaria-resistant mosquitoes.
J Vis Exp. 2007(5):216. doi: 10.3791/216. Epub 2007 Jul 4.
6
Can transgenic mosquitoes afford the fitness cost?
Trends Parasitol. 2008 Jan;24(1):4-7. doi: 10.1016/j.pt.2007.09.009. Epub 2007 Dec 27.
7
A standard cytogenetic photomap for the mosquito Anopheles stephensi (Diptera: Culicidae): application for physical mapping.
J Med Entomol. 2006 Sep;43(5):861-6. doi: 10.1603/0022-2585(2006)43[861:ascpft]2.0.co;2.
8
High efficiency site-specific genetic engineering of the mosquito genome.
Insect Mol Biol. 2006 Apr;15(2):129-36. doi: 10.1111/j.1365-2583.2006.00615.x.
9
Mosquito transgenesis: what is the fitness cost?
Trends Parasitol. 2006 May;22(5):197-202. doi: 10.1016/j.pt.2006.03.004. Epub 2006 Mar 24.
10
Fitness consequences of Anopheles gambiae population hybridization.
Malar J. 2005 Sep 20;4:44. doi: 10.1186/1475-2875-4-44.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验