Suppr超能文献

利用共焦换能器进行声振成像的热安全性。

Thermal safety of vibro-acoustography using a confocal transducer.

机构信息

Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.

出版信息

Ultrasound Med Biol. 2010 Feb;36(2):343-9. doi: 10.1016/j.ultrasmedbio.2009.10.003.

Abstract

Vibro-acoustography (VA) is an imaging method that forms a two-dimensional (2-D) image by moving two cofocused ultrasound beams with slightly different frequencies over the object in a C-scan format and recording acoustic emission from the focal region at the difference frequency. This article studies tissue heating due to a VA scan using a concentric confocal transducer. The three-dimensional (3-D) ultrasound intensity field calculated by Field II is used with the bio-heat equation to estimate tissue heating due to ultrasound absorption. Results calculated with thermal conduction and with blood perfusion, with conduction and without perfusion and without conduction and without perfusion are compared. Maximum heating due to ultrasound absorption occurs in the transducer's near-field and maximum temperature rise in soft tissue during a single VA scan is below 0.05 degrees C for all three attenuation coefficients evaluated: 0.3, 0.5 and 0.7 dB/cm/MHz. Transducer self-heating during a single VA scan measured by a thermocouple is less than 0.27 degrees C.

摘要

超声声振造影(VA)是一种成像方法,它通过在 C 扫描格式下在物体上移动两个略微不同频率的共焦超声束,并记录来自焦域的差频声发射,从而形成二维(2-D)图像。本文研究了使用同心共焦换能器进行 VA 扫描引起的组织加热。使用 Field II 计算的三维(3-D)超声强度场与生物热方程一起用于估计由于超声吸收引起的组织加热。比较了考虑热传导和血液灌注、仅考虑热传导、不考虑热传导和血液灌注这三种情况下的结果。在近场中,由于超声吸收引起的最大加热发生在换能器中,在单个 VA 扫描过程中,在三种评估的衰减系数(0.3、0.5 和 0.7 dB/cm/MHz)下,软组织中的最大温升均低于 0.05 摄氏度。通过热电偶测量的单个 VA 扫描期间的换能器自加热小于 0.27 摄氏度。

相似文献

1
Thermal safety of vibro-acoustography using a confocal transducer.
Ultrasound Med Biol. 2010 Feb;36(2):343-9. doi: 10.1016/j.ultrasmedbio.2009.10.003.
2
A beamforming study for implementation of vibro-acoustography with a 1.75-D array transducer.
IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Mar;60(3):535-51. doi: 10.1109/TUFFC.2013.2595.
3
Implementation of vibro-acoustography on a clinical ultrasound system.
IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Jun;58(6):1169-81. doi: 10.1109/TUFFC.2011.1927.
4
Image features in medical vibro-acoustography: in vitro and in vivo results.
Ultrasonics. 2008 Nov;48(6-7):559-62. doi: 10.1016/j.ultras.2008.04.014. Epub 2008 May 25.
5
Development of a thermal test object for the measurement of ultrasound intracavity transducer self-heating.
Ultrasound Med Biol. 2008 Dec;34(12):2035-42. doi: 10.1016/j.ultrasmedbio.2008.06.002. Epub 2008 Aug 23.
6
Transcranial vibro-acoustography can detect traumatic brain injury, in-vivo: Preliminary studies.
Ultrasonics. 2015 Aug;61:151-6. doi: 10.1016/j.ultras.2015.04.014. Epub 2015 May 5.
7
Complex background suppression for vibro-acoustography images.
Ultrasonics. 2015 Feb;56:456-72. doi: 10.1016/j.ultras.2014.09.014. Epub 2014 Sep 30.
8
Difference-frequency generation in vibro-acoustography.
Phys Med Biol. 2011 Sep 21;56(18):5985-93. doi: 10.1088/0031-9155/56/18/013. Epub 2011 Aug 22.
9
Preliminary results of vibro-acoustography evaluation of bone surface and bone fracture.
Quant Imaging Med Surg. 2017 Oct;7(5):549-554. doi: 10.21037/qims.2017.09.05.
10
Vibro-acoustography: quantification of flow with highly-localized low-frequency acoustic force.
Ultrason Imaging. 2001 Oct;23(4):249-56. doi: 10.1177/016173460102300403.

引用本文的文献

1
Breast vibro-acoustography: initial experience in benign lesions.
BMC Med Imaging. 2014 Dec 30;14:40. doi: 10.1186/s12880-014-0040-1.
2
Vibro-acoustography beam formation with reconfigurable arrays.
IEEE Trans Ultrason Ferroelectr Freq Control. 2012 Jul;59(7):1421-31. doi: 10.1109/TUFFC.2012.2343.
3
A Review of Vibro-acoustography and its Applications in Medicine.
Curr Med Imaging Rev. 2011 Nov 1;7(4):350-359. doi: 10.2174/157340511798038648.
4
Implementation of vibro-acoustography on a clinical ultrasound system.
IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Jun;58(6):1169-81. doi: 10.1109/TUFFC.2011.1927.

本文引用的文献

1
Analysis of tissue and arterial blood temperatures in the resting human forearm.
J Appl Physiol. 1948 Aug;1(2):93-122. doi: 10.1152/jappl.1948.1.2.93.
2
Image features in medical vibro-acoustography: in vitro and in vivo results.
Ultrasonics. 2008 Nov;48(6-7):559-62. doi: 10.1016/j.ultras.2008.04.014. Epub 2008 May 25.
3
In vivo vibroacoustography of large peripheral arteries.
Invest Radiol. 2008 Apr;43(4):243-52. doi: 10.1097/RLI.0b013e31816085fc.
4
Soft tissue temperature rise caused by scanned, diagnostic ultrasound.
IEEE Trans Ultrason Ferroelectr Freq Control. 1993;40(1):59-66. doi: 10.1109/58.184999.
5
Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers.
IEEE Trans Ultrason Ferroelectr Freq Control. 1992;39(2):262-7. doi: 10.1109/58.139123.
6
Frame rate considerations for real-time abdominal acoustic radiation force impulse imaging.
Ultrason Imaging. 2006 Oct;28(4):193-210. doi: 10.1177/016173460602800401.
7
Critical issues in breast imaging by vibro-acoustography.
Ultrasonics. 2006 Dec 22;44 Suppl 1:e217-20. doi: 10.1016/j.ultras.2006.06.021. Epub 2006 Jun 30.
8
On the thermal effects associated with radiation force imaging of soft tissue.
IEEE Trans Ultrason Ferroelectr Freq Control. 2004 May;51(5):551-65.
10
A Green's function approach to local rf heating in interventional MRI.
Med Phys. 2001 May;28(5):826-32. doi: 10.1118/1.1367860.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验