Center of Mathematics, Computation and Cognition, Universidade Federal do ABC, São Paulo, Brazil.
Neuroimage. 2010 May 1;50(4):1416-26. doi: 10.1016/j.neuroimage.2010.01.075. Epub 2010 Jan 29.
Simultaneous acquisition of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) aims to disentangle the description of brain processes by exploiting the advantages of each technique. Most studies in this field focus on exploring the relationships between fMRI signals and the power spectrum at some specific frequency bands (alpha, beta, etc.). On the other hand, brain mapping of EEG signals (e.g., interictal spikes in epileptic patients) usually assumes an haemodynamic response function for a parametric analysis applying the GLM, as a rough approximation. The integration of the information provided by the high spatial resolution of MR images and the high temporal resolution of EEG may be improved by referencing them by transfer functions, which allows the identification of neural driven areas without strong assumptions about haemodynamic response shapes or brain haemodynamic's homogeneity. The difference on sampling rate is the first obstacle for a full integration of EEG and fMRI information. Moreover, a parametric specification of a function representing the commonalities of both signals is not established. In this study, we introduce a new data-driven method for estimating the transfer function from EEG signal to fMRI signal at EEG sampling rate. This approach avoids EEG subsampling to fMRI time resolution and naturally provides a test for EEG predictive power over BOLD signal fluctuations, in a well-established statistical framework. We illustrate this concept in resting state (eyes closed) and visual simultaneous fMRI-EEG experiments. The results point out that it is possible to predict the BOLD fluctuations in occipital cortex by using EEG measurements.
同时采集脑电图 (EEG) 和功能磁共振成像 (fMRI) 旨在通过利用每种技术的优势来阐明脑过程的描述。该领域的大多数研究都集中在探索 fMRI 信号与特定频带(阿尔法、贝塔等)的功率谱之间的关系。另一方面,EEG 信号的脑映射(例如,癫痫患者的发作间期棘波)通常假设为参数分析应用 GLM 的血流动力学响应函数,作为粗略的近似。通过传递函数参考它们,高空间分辨率的 MR 图像和高时间分辨率的 EEG 提供的信息的整合可能会得到改善,这允许在没有对血流动力学响应形状或大脑血流动力学的同质性的强烈假设的情况下识别神经驱动区域。采样率的差异是 EEG 和 fMRI 信息完全整合的第一个障碍。此外,还没有建立代表两种信号共性的函数的参数规范。在这项研究中,我们介绍了一种新的、数据驱动的方法,用于在 EEG 采样率下从 EEG 信号估计到 fMRI 信号的传递函数。这种方法避免了 EEG 对 fMRI 时间分辨率的子采样,并在既定的统计框架中自然提供了对 EEG 对 BOLD 信号波动的预测能力的测试。我们在静息状态(闭眼)和视觉同步 fMRI-EEG 实验中说明了这一概念。结果表明,通过使用 EEG 测量可以预测枕叶皮层的 BOLD 波动。