Suppr超能文献

将 EEG 和 fMRI 整合到癫痫中。

Integrating EEG and fMRI in epilepsy.

机构信息

Department of Information Engineering, University of Padova, Padova, Italy.

出版信息

Neuroimage. 2011 Feb 14;54(4):2719-31. doi: 10.1016/j.neuroimage.2010.11.038. Epub 2010 Nov 23.

Abstract

Integrating electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) studies enables to non-invasively investigate human brain function and to find the direct correlation of these two important measures of brain activity. Presurgical evaluation of patients with epilepsy is one of the areas where EEG and fMRI integration has considerable clinical relevance for localizing the brain regions generating interictal epileptiform activity. The conventional analysis of EEG-fMRI data is based on the visual identification of the interictal epileptiform discharges (IEDs) on scalp EEG. The convolution of these EEG events, represented as stick functions, with a model of the fMRI response, i.e. the hemodynamic response function, provides the regressor for general linear model (GLM) analysis of fMRI data. However, the conventional analysis is not automatic and suffers of some subjectivity in IEDs classification. Here, we present an easy-to-use and automatic approach for combined EEG-fMRI analysis able to improve IEDs identification based on Independent Component Analysis and wavelet analysis. EEG signal due to IED is reconstructed and its wavelet power is used as a regressor in GLM. The method was validated on simulated data and then applied on real data set consisting of 2 normal subjects and 5 patients with partial epilepsy. In all continuous EEG-fMRI recording sessions a good quality EEG was obtained allowing the detection of spontaneous IEDs and the analysis of the related BOLD activation. The main clinical finding in EEG-fMRI studies of patients with partial epilepsy is that focal interictal slow-wave activity was invariably associated with increased focal BOLD responses in a spatially related brain area. Our study extends current knowledge on epileptic foci localization and confirms previous reports suggesting that BOLD activation associated with slow activity might have a role in localizing the epileptogenic region even in the absence of clear interictal spikes.

摘要

将脑电图 (EEG) 和功能磁共振成像 (fMRI) 研究结合起来,可以非侵入性地研究人类大脑功能,并找到这两种重要的大脑活动测量方法的直接相关性。癫痫患者的术前评估是 EEG 和 fMRI 整合具有相当临床相关性的领域之一,可用于定位产生间发性癫痫样活动的大脑区域。传统的 EEG-fMRI 数据分析基于头皮 EEG 上间发性癫痫样放电 (IEDs) 的视觉识别。这些 EEG 事件的卷积,以棒函数的形式表示,与 fMRI 响应模型(即血流动力学响应函数)卷积,为 fMRI 数据的广义线性模型 (GLM) 分析提供回归量。然而,传统的分析不是自动的,并且在 IED 分类方面存在一些主观性。在这里,我们提出了一种易于使用且自动的 EEG-fMRI 联合分析方法,该方法能够基于独立成分分析和小波分析来改善 IED 识别。基于 IED 的 EEG 信号被重建,其小波功率用作 GLM 中的回归量。该方法在模拟数据上进行了验证,然后应用于由 2 名正常受试者和 5 名部分癫痫患者组成的真实数据集。在所有连续的 EEG-fMRI 记录过程中,都获得了高质量的 EEG,允许检测自发性 IED 并分析相关的 BOLD 激活。部分癫痫患者 EEG-fMRI 研究的主要临床发现是,局灶性间发性慢波活动始终与空间相关脑区的局灶性 BOLD 反应增加相关。我们的研究扩展了关于癫痫灶定位的现有知识,并证实了之前的报告,即与慢波相关的 BOLD 激活可能在定位致痫区方面发挥作用,即使在没有明确的间发性棘波的情况下也是如此。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验