Suppr超能文献

年龄校正与痴呆分类准确性。

Age corrections and dementia classification accuracy.

机构信息

Department of Psychology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.

出版信息

Arch Clin Neuropsychol. 2010 Mar;25(2):126-38. doi: 10.1093/arclin/acp111. Epub 2010 Jan 29.

Abstract

In contrast to expectations, demographic corrections to reduce biases against those of advanced age or few years of education does not universally improve diagnostic classification accuracy. Age corrections may be particularly problematic because age is also a risk factor for a dementia diagnosis. We found that simulating increased risk for dementia based on demographic variables, such as age, reduced the overall classification accuracy for demographically corrected simulated scores relative to the raw, uncorrected test scores. In clinical data with a small magnitude of association between age and dementia diagnosis, we found equivalent overall classification accuracy for demographically corrected and raw test scores. Regardless of the overall classification accuracy results, cutoff comparisons (16th and 9th percentiles) in clinical and simulated data demonstrated that for the most part, the sensitivity of raw scores was higher than the sensitivity of demographically corrected scores, but the specificity of scores corrected with normative data was superior.

摘要

与预期相反,针对年龄较大或受教育年限较少的人群的人口统计学校正并不能普遍提高诊断分类的准确性。年龄校正可能特别成问题,因为年龄也是痴呆症诊断的一个风险因素。我们发现,基于人口统计学变量(如年龄)模拟痴呆症风险增加,会降低人口统计学校正模拟分数相对于原始未校正测试分数的整体分类准确性。在年龄与痴呆症诊断之间关联幅度较小的临床数据中,我们发现人口统计学校正和原始测试分数的整体分类准确性相当。无论整体分类准确性结果如何,临床和模拟数据中的截止值比较(第 16 百分位和第 9 百分位)表明,在大多数情况下,原始分数的敏感性高于人口统计学校正分数的敏感性,但使用规范数据校正后的分数的特异性更高。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验