Suppr超能文献

在一株具有活性丙酮酸脱氢酶的厌氧型大肠杆菌菌株中,丙酮酸节点的代谢通量控制。

Metabolic flux control at the pyruvate node in an anaerobic Escherichia coli strain with an active pyruvate dehydrogenase.

机构信息

Department of Microbiology and Cell Science, Box 110700, University of Florida, Gainesville, FL 32611, USA.

出版信息

Appl Environ Microbiol. 2010 Apr;76(7):2107-14. doi: 10.1128/AEM.02545-09. Epub 2010 Jan 29.

Abstract

During anaerobic growth of Escherichia coli, pyruvate formate-lyase (PFL) and lactate dehydrogenase (LDH) channel pyruvate toward a mixture of fermentation products. We have introduced a third branch at the pyruvate node in a mutant of E. coli with a mutation in pyruvate dehydrogenase (PDH*) that renders the enzyme less sensitive to inhibition by NADH. The key starting enzymes of the three branches at the pyruvate node in such a mutant, PDH*, PFL, and LDH, have different metabolic potentials and kinetic properties. In such a mutant (strain QZ2), pyruvate flux through LDH was about 30%, with the remainder of the flux occurring through PFL, indicating that LDH is a preferred route of pyruvate conversion over PDH*. In a pfl mutant (strain YK167) with both PDH* and LDH activities, flux through PDH* was about 33% of the total, confirming the ability of LDH to outcompete the PDH pathway for pyruvate in vivo. Only in the absence of LDH (strain QZ3) was pyruvate carbon equally distributed between the PDH* and PFL pathways. A pfl mutant with LDH and PDH* activities, as well as a pfl ldh double mutant with PDH* activity, had a surprisingly low cell yield per mole of ATP (Y(ATP)) (about 7.0 g of cells per mol of ATP) compared to 10.9 g of cells per mol of ATP for the wild type. The lower Y(ATP) suggests the operation of a futile energy cycle in the absence of PFL in this strain. An understanding of the controls at the pyruvate node during anaerobic growth is expected to provide unique insights into rational metabolic engineering of E. coli and related bacteria for the production of various biobased products at high rates and yields.

摘要

在大肠杆菌的厌氧生长过程中,丙酮酸甲酸裂解酶(PFL)和乳酸脱氢酶(LDH)将丙酮酸导向发酵产物的混合物。我们在一种突变的大肠杆菌中引入了第三个分支,该突变位于丙酮酸脱氢酶(PDH*)的一个突变点上,使该酶对 NADH 的抑制作用不那么敏感。在这样的突变体中,三个分支在丙酮酸节点的关键起始酶,PDH*、PFL 和 LDH,具有不同的代谢潜力和动力学特性。在这样的突变体(菌株 QZ2)中,LDH 介导的丙酮酸通量约为 30%,其余通量通过 PFL 发生,表明 LDH 是丙酮酸转化为 PDH的首选途径。在同时具有 PDH和 LDH 活性的 pfl 突变体(菌株 YK167)中,PDH途径的通量约占总通量的 33%,证实了 LDH 在体内竞争丙酮酸的 PDH 途径的能力。只有在没有 LDH(菌株 QZ3)的情况下,丙酮酸碳才在 PDH和 PFL 途径之间均匀分布。具有 LDH 和 PDH活性的 pfl 突变体,以及具有 PDH活性的 pfl ldh 双突变体,与野生型相比,每摩尔 ATP 的细胞产率(Y(ATP))(约 7.0 g 细胞/mol ATP)非常低,仅为 10.9 g 细胞/mol ATP。较低的 Y(ATP)表明在该菌株中没有 PFL 时,会发生无效能量循环。对厌氧生长过程中丙酮酸节点的控制的理解有望为理性代谢工程提供独特的见解,使大肠杆菌和相关细菌能够以高速率和高产量生产各种生物基产品。

相似文献

1
Metabolic flux control at the pyruvate node in an anaerobic Escherichia coli strain with an active pyruvate dehydrogenase.
Appl Environ Microbiol. 2010 Apr;76(7):2107-14. doi: 10.1128/AEM.02545-09. Epub 2010 Jan 29.
5
Pyruvate formate-lyase is not essential for nitrate respiration by Escherichia coli.
FEMS Microbiol Lett. 1994 Apr 1;117(2):163-8. doi: 10.1111/j.1574-6968.1994.tb06759.x.
6
Pyruvate Production by Escherichia coli by Use of Pyruvate Dehydrogenase Variants.
Appl Environ Microbiol. 2021 Jun 11;87(13):e0048721. doi: 10.1128/AEM.00487-21.
8
Altering the sensitivity of Escherichia coli pyruvate dehydrogenase complex to NADH inhibition by structure-guided design.
Enzyme Microb Technol. 2018 Dec;119:52-57. doi: 10.1016/j.enzmictec.2018.09.002. Epub 2018 Sep 5.

引用本文的文献

1
Expression of Fluorescence Reporters and Natural Products in Native Gut .
ACS Synth Biol. 2025 May 16;14(5):1557-1566. doi: 10.1021/acssynbio.4c00835. Epub 2025 Mar 26.
2
Nitric Oxide Inhibition of Glycyl Radical Enzymes and Their Activases.
J Am Chem Soc. 2025 Apr 9;147(14):11777-11788. doi: 10.1021/jacs.4c14786. Epub 2025 Mar 25.
3
Nitric Oxide Inhibition of Glycyl Radical Enzymes and Their Activases.
bioRxiv. 2025 Feb 27:2025.02.23.639758. doi: 10.1101/2025.02.23.639758.
4
Rewiring cell-free metabolic flux in lysates using a block-push-pull approach.
Synth Biol (Oxf). 2023 Apr 17;8(1):ysad007. doi: 10.1093/synbio/ysad007. eCollection 2023.
5
Improving pathway prediction accuracy of constraints-based metabolic network models by treating enzymes as microcompartments.
Synth Syst Biotechnol. 2023 Sep 12;8(4):597-605. doi: 10.1016/j.synbio.2023.09.002. eCollection 2023 Dec.
7
Response to substrate limitation by a marine sulfate-reducing bacterium.
ISME J. 2022 Jan;16(1):200-210. doi: 10.1038/s41396-021-01061-2. Epub 2021 Jul 20.
8
L-Alanine Prototrophic Suppressors Emerge from L-Alanine Auxotroph through Stress-Induced Mutagenesis in .
Microorganisms. 2021 Feb 25;9(3):472. doi: 10.3390/microorganisms9030472.
9
A lysate proteome engineering strategy for enhancing cell-free metabolite production.
Metab Eng Commun. 2021 Jan 22;12:e00162. doi: 10.1016/j.mec.2021.e00162. eCollection 2021 Jun.
10

本文引用的文献

1
Hydrogen from intestinal bacteria is protective for Concanavalin A-induced hepatitis.
Biochem Biophys Res Commun. 2009 Aug 21;386(2):316-21. doi: 10.1016/j.bbrc.2009.06.024. Epub 2009 Jun 10.
2
ATP limitation in a pyruvate formate lyase mutant of Escherichia coli MG1655 increases glycolytic flux to D-lactate.
J Ind Microbiol Biotechnol. 2009 Aug;36(8):1057-62. doi: 10.1007/s10295-009-0589-9. Epub 2009 May 27.
4
The energy spilling reactions of bacteria and other organisms.
J Mol Microbiol Biotechnol. 2007;13(1-3):1-11. doi: 10.1159/000103591.
5
Construction of an Escherichia coli K-12 mutant for homoethanologenic fermentation of glucose or xylose without foreign genes.
Appl Environ Microbiol. 2007 Mar;73(6):1766-71. doi: 10.1128/AEM.02456-06. Epub 2007 Jan 26.
6
Metabolic futile cycles and their functions: a systems analysis of energy and control.
Syst Biol (Stevenage). 2006 Jul;153(4):192-200. doi: 10.1049/ip-syb:20050086.
7
Genome-scale in silico aided metabolic analysis and flux comparisons of Escherichia coli to improve succinate production.
Appl Microbiol Biotechnol. 2006 Dec;73(4):887-94. doi: 10.1007/s00253-006-0535-y. Epub 2006 Aug 23.
8
Expression of fnr is constrained by an upstream IS5 insertion in certain Escherichia coli K-12 strains.
J Bacteriol. 2005 Apr;187(8):2609-17. doi: 10.1128/JB.187.8.2609-2617.2005.
10
Pyruvate formate lyase and acetate kinase are essential for anaerobic growth of Escherichia coli on xylose.
J Bacteriol. 2004 Nov;186(22):7593-600. doi: 10.1128/JB.186.22.7593-7600.2004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验