Suppr超能文献

通过将酶视为微区室来提高基于约束的代谢网络模型的途径预测准确性。

Improving pathway prediction accuracy of constraints-based metabolic network models by treating enzymes as microcompartments.

作者信息

Yang Xue, Mao Zhitao, Huang Jianfeng, Wang Ruoyu, Dong Huaming, Zhang Yanfei, Ma Hongwu

机构信息

Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.

National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.

出版信息

Synth Syst Biotechnol. 2023 Sep 12;8(4):597-605. doi: 10.1016/j.synbio.2023.09.002. eCollection 2023 Dec.

Abstract

Metabolic network models have become increasingly precise and accurate as the most widespread and practical digital representations of living cells. The prediction functions were significantly expanded by integrating cellular resources and abiotic constraints in recent years. However, if unreasonable modeling methods were adopted due to a lack of consideration of biological knowledge, the conflicts between stoichiometric and other constraints, such as thermodynamic feasibility and enzyme resource availability, would lead to distorted predictions. In this work, we investigated a prediction anomaly of EcoETM, a constraints-based metabolic network model, and introduced the idea of enzyme compartmentalization into the analysis process. Through rational combination of reactions, we avoid the false prediction of pathway feasibility caused by the unrealistic assumption of free intermediate metabolites. This allowed us to correct the pathway structures of l-serine and l-tryptophan. A specific analysis explains the application method of the EcoETM-like model and demonstrates its potential and value in correcting the prediction results in pathway structure by resolving the conflict between different constraints and incorporating the evolved roles of enzymes as reaction compartments. Notably, this work also reveals the trade-off between product yield and thermodynamic feasibility. Our work is of great value for the structural improvement of constraints-based models.

摘要

代谢网络模型作为活细胞最广泛且实用的数字表示形式,已变得越来越精确和准确。近年来,通过整合细胞资源和非生物约束,预测功能得到了显著扩展。然而,如果由于缺乏对生物学知识的考虑而采用不合理的建模方法,化学计量与其他约束(如热力学可行性和酶资源可用性)之间的冲突将导致预测失真。在这项工作中,我们研究了基于约束的代谢网络模型EcoETM的一个预测异常情况,并将酶区室化的概念引入分析过程。通过合理组合反应,我们避免了由于游离中间代谢物的不切实际假设而导致的途径可行性的错误预测。这使我们能够校正L-丝氨酸和L-色氨酸的途径结构。一项具体分析解释了类EcoETM模型的应用方法,并通过解决不同约束之间的冲突以及纳入酶作为反应区室的进化作用,展示了其在校正途径结构预测结果方面的潜力和价值。值得注意的是,这项工作还揭示了产物产量与热力学可行性之间的权衡。我们的工作对于基于约束的模型的结构改进具有重要价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14ff/10514394/d88e39da81e1/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验