Suppr超能文献

葡萄糖限制连续培养中大肠杆菌的代谢通量分析。I. 稳态下生长速率依赖性代谢效率

Metabolic flux analysis of Escherichia coli in glucose-limited continuous culture. I. Growth-rate-dependent metabolic efficiency at steady state.

作者信息

Kayser Anke, Weber Jan, Hecht Volker, Rinas Ursula

机构信息

Biochemical Engineering Division, GBF - National Research Centre for Biotechnology, Mascheroder Weg 1, 38124 Braunschweig, Germany.

出版信息

Microbiology (Reading). 2005 Mar;151(Pt 3):693-706. doi: 10.1099/mic.0.27481-0.

Abstract

The Escherichia coli K-12 strain TG1 was grown at 28 degrees C in aerobic glucose-limited continuous cultures at dilution rates ranging from 0.044 to 0.415 h(-1). The rates of biomass formation, the specific rates of glucose, ammonium and oxygen uptake and the specific carbon dioxide evolution rate increased linearly with the dilution rate up to 0.3 h(-1). At dilution rates between 0.3 h(-1) and 0.4 h(-1), a strong deviation from the linear increase to lower specific oxygen uptake and carbon dioxide evolution rates occurred. The biomass formation rate and the specific glucose and ammonium uptake rates did not deviate that strongly from the linear increase up to dilution rates of 0.4 h(-1). An increasing percentage of glucose carbon flow towards biomass determined by a reactor mass balance and a decreasing specific ATP production rate concomitant with a decreasing adenylate energy charge indicated higher energetic efficiency of carbon substrate utilization at higher dilution rates. Estimation of metabolic fluxes by a stoichiometric model revealed an increasing activity of the pentose phosphate pathway and a decreasing tricarboxylic acid cycle activity with increasing dilution rates, indicative of the increased NADPH and precursor demand for anabolic purposes at the expense of ATP formation through catabolic activities. Thus, increasing growth rates first result in a more energy-efficient use of the carbon substrate for biomass production, i.e. a lower portion of the carbon substrate is channelled into the respiratory, energy-generating pathway. At dilution rates above 0.4 h(-1), close to the wash-out point, respiration rates dropped sharply and accumulation of glucose and acetic acid was observed. Energy generation through acetate formation yields less ATP compared with complete oxidation of the sugar carbon substrate, but is the result of maximized energy generation under conditions of restrictions in the tricarboxylic acid cycle or in respiratory NADH turnover. Thus, the data strongly support the conclusion that, in aerobic glucose-limited continuous cultures of E. coli TG1, two different carbon limitations occur: at low dilution rates, cell growth is limited by cell-carbon supply and, at high dilution rates, by energy-carbon supply.

摘要

大肠杆菌K - 12菌株TG1在28摄氏度下于有氧葡萄糖限制的连续培养物中生长,稀释率范围为0.044至0.415 h⁻¹。生物量形成速率、葡萄糖、铵和氧气的比摄取速率以及比二氧化碳释放速率在稀释率达到0.3 h⁻¹之前随稀释率呈线性增加。在0.3 h⁻¹和0.4 h⁻¹之间的稀释率下,出现了与线性增加的强烈偏差,比氧气摄取和二氧化碳释放速率降低。生物量形成速率以及比葡萄糖和铵摄取速率在稀释率达到0.4 h⁻¹之前与线性增加的偏差并不那么强烈。通过反应器质量平衡确定的流向生物量的葡萄糖碳流百分比增加,以及比ATP产生速率降低,同时腺苷酸能量电荷降低,表明在较高稀释率下碳底物利用的能量效率更高。通过化学计量模型估算代谢通量表明,随着稀释率增加,磷酸戊糖途径的活性增加,三羧酸循环活性降低,这表明为了合成代谢目的,以通过分解代谢活动形成ATP为代价增加了对NADPH和前体的需求。因此,生长速率增加首先导致用于生物量生产的碳底物的能量利用效率更高,即较少部分的碳底物被导向呼吸的、产生能量的途径。在高于0.4 h⁻¹的稀释率下,接近洗出点时,呼吸速率急剧下降,观察到葡萄糖和乙酸的积累。与糖碳底物的完全氧化相比,通过乙酸形成产生能量产生的ATP较少,但这是在三羧酸循环或呼吸NADH周转受到限制的条件下能量产生最大化的结果。因此,数据有力地支持了这样的结论:在大肠杆菌TG1的有氧葡萄糖限制连续培养物中,存在两种不同的碳限制:在低稀释率下,细胞生长受细胞碳供应限制,在高稀释率下,受能量碳供应限制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验