Department of Mechanical Engineering, Yuan Ze University, 135 Yuan-Tung Rd., Chung-Li, Taoyuan 320, Taiwan.
Ann Biomed Eng. 2010 Apr;38(4):1337-44. doi: 10.1007/s10439-010-9939-z. Epub 2010 Jan 30.
The human heartbeat interval is determined by complex nerve control and environmental inputs. As a result, the heartbeat interval for a human is a complex time series, as shown by previous studies. Most of the analysis algorithms proposed for characterizing the profile of heartbeat time series, such as detrended fluctuation analysis and multi-scale entropy, are based on various characteristics of dynamics. In this study, we present an empirical mode decomposition-based intrinsic mode analysis, which uses the appearance energy index (AEI) to quantify the property of long-term correlation, and structure index (SI) to characterize the internal modulation of data. This presented algorithm was used to investigate the human heartbeat time series downloaded from PhysioBank. We found the profiles of human heartbeat time series of subjects with congestive heart failure (CHF) or atrial fibrillation (AF) are significantly different from those of healthy subjects in internal modulation as shown by SI. Moreover, AEI is the critical characteristics for verifying subjects with CHF from subjects with AF in a degree of long-term correlation. Both AEI and SI contribute to presenting the characteristic profiles of a human heartbeat time series.
人类的心跳间隔由复杂的神经控制和环境输入决定。因此,如先前研究所示,人类的心跳间隔是一个复杂的时间序列。大多数用于描述心跳时间序列特征的分析算法,如去趋势波动分析和多尺度熵,都是基于动力学的各种特征提出的。在这项研究中,我们提出了一种基于经验模态分解的固有模态分析方法,该方法使用表象能量指数(AEI)来量化长期相关的特性,以及结构指数(SI)来描述数据的内部调制。该算法用于研究从 PhysioBank 下载的人类心跳时间序列。我们发现,充血性心力衰竭(CHF)或心房颤动(AF)患者的人类心跳时间序列的特征与健康受试者的特征在内部调制方面存在显著差异,如 SI 所示。此外,AEI 是验证 CHF 患者与 AF 患者在长期相关程度上的关键特征。AEI 和 SI 都有助于呈现人类心跳时间序列的特征轮廓。