Suppr超能文献

健康人与心脏病患者心跳间期序列的多尺度反馈比率分析

A multi-scale feedback ratio analysis of heartbeat interval series in healthy vs. cardiac patients.

作者信息

Huo Chengyu, Huang Xiaolin, Ni Huangjing, Liu Hongxing, Bian Chunhua, Ning Xinbao

机构信息

Institute of Biomedical Electronic Engineering, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; School of Physics and Electronic Engineering, Changshu Institute of Technology, Changshu 215500, China.

Institute of Biomedical Electronic Engineering, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China.

出版信息

Med Eng Phys. 2014 Dec;36(12):1693-8. doi: 10.1016/j.medengphy.2014.09.015. Epub 2014 Oct 16.

Abstract

The second-order difference plot, as a modified Poincaré plot, is one of the important approaches for assessing the dynamics of heart rate variability. However, corresponding quantitative analysis methods are relatively limited. Based on the second-order difference plot, we propose a novel method, called the multi-scale feedback ratio analysis, which can measure the feedback properties of heart rate fluctuations on different temporal scales. The index [R(TF([τ(1), τ(2)]) is then defined to quantify the average feedback ratio through a definite scale range. Analysis of Gaussian white, 1/f and Brownian noises show that the feedback ratios are indeed on different levels. The method is then applied to heartbeat interval series derived from healthy subjects, subjects with congestive heart failure and subjects with atrial fibrillation. Results show that, for all groups, the feedback ratios vary with increasing time scales, and gradually reach relatively stable states. The R(TF)([10,20]) values of the three groups are significantly different. Thus, R(TF)([10,20]) becomes an effective parameter for distinguishing healthy and pathologic states. In addition, RTF([10,20]) for healthy, congestive failure and atrial fibrillation subjects are close to those of the 1/f, Brownian and white noises respectively, indicating different intrinsic dynamics.

摘要

二阶差分图作为一种改进的庞加莱图,是评估心率变异性动态变化的重要方法之一。然而,相应的定量分析方法相对有限。基于二阶差分图,我们提出了一种新的方法,称为多尺度反馈比率分析,它可以测量不同时间尺度上心率波动的反馈特性。然后定义指标[R(TF([τ(1), τ(2)]),以通过确定的尺度范围量化平均反馈比率。对高斯白噪声、1/f噪声和布朗噪声的分析表明,反馈比率确实处于不同水平。该方法随后应用于来自健康受试者、充血性心力衰竭受试者和心房颤动受试者的心跳间期序列。结果表明,对于所有组,反馈比率随时间尺度的增加而变化,并逐渐达到相对稳定状态。三组的R(TF)([10,20])值有显著差异。因此,R(TF)([10,20])成为区分健康和病理状态的有效参数。此外,健康、充血性心力衰竭和心房颤动受试者的RTF([10,20])分别接近1/f噪声、布朗噪声和白噪声的相应值,表明其内在动力学不同。

相似文献

1
A multi-scale feedback ratio analysis of heartbeat interval series in healthy vs. cardiac patients.
Med Eng Phys. 2014 Dec;36(12):1693-8. doi: 10.1016/j.medengphy.2014.09.015. Epub 2014 Oct 16.
2
Intrinsic mode analysis of human heartbeat time series.
Ann Biomed Eng. 2010 Apr;38(4):1337-44. doi: 10.1007/s10439-010-9939-z. Epub 2010 Jan 30.
3
Event and time-scale characteristics of heart-rate dynamics.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jun;71(6 Pt 1):061917. doi: 10.1103/PhysRevE.71.061917. Epub 2005 Jun 24.
5
Linguistic analysis of the human heartbeat using frequency and rank order statistics.
Phys Rev Lett. 2003 Mar 14;90(10):108103. doi: 10.1103/PhysRevLett.90.108103. Epub 2003 Mar 13.
6
Characterizing heart rate variability by scale-dependent Lyapunov exponent.
Chaos. 2009 Jun;19(2):028506. doi: 10.1063/1.3152007.
7
Large-scale dimension densities for heart rate variability analysis.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Apr;73(4 Pt 1):041907. doi: 10.1103/PhysRevE.73.041907. Epub 2006 Apr 10.
8
Multiscale Poincaré plots for visualizing the structure of heartbeat time series.
BMC Med Inform Decis Mak. 2016 Feb 9;16:17. doi: 10.1186/s12911-016-0252-0.
9
Scale-independent measures and pathologic cardiac dynamics.
Phys Rev Lett. 1998 Sep 14;81(11):2388-91. doi: 10.1103/PhysRevLett.81.2388.
10
A new approach to detect congestive heart failure using Teager energy nonlinear scatter plot of R-R interval series.
Med Eng Phys. 2012 Sep;34(7):841-8. doi: 10.1016/j.medengphy.2011.09.026. Epub 2011 Oct 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验