Suppr超能文献

基于单体型的家系数据关联分析的新方法。

A novel approach for haplotype-based association analysis using family data.

机构信息

Electrical Engineering and Computer Science Department, Case Western Reserve University, Cleveland, OH 44106, USA.

出版信息

BMC Bioinformatics. 2010 Jan 18;11 Suppl 1(Suppl 1):S45. doi: 10.1186/1471-2105-11-S1-S45.

Abstract

BACKGROUND

Haplotype-based approaches have been extensively studied for case-control association mapping in recent years. It has been shown that haplotype methods can provide more consistent results comparing to single-locus based approaches, especially in cases where causal variants are not typed. Improved power has been observed by clustering similar or rare haplotypes into groups to reduce the degrees of freedom of association tests. For family-based association studies, one commonly used strategy is Transmission Disequilibrium Tests (TDT), which examine the imbalanced transmission of alleles/haplotypes to affected and normal children. Many extensions have been developed to deal with general pedigrees and continuous traits.

RESULTS

In this paper, we propose a new haplotype-based association method for family data that is different from the TDT framework. Our approach (termed F_HapMiner) is based on our previous successful experiences on haplotype inference from pedigree data and haplotype-based association mapping. It first infers diplotype pairs of each individual in each pedigree assuming no recombination within a family. A phenotype score is then defined for each founder haplotype. Finally, F_HapMiner applies a clustering algorithm on those founder haplotypes based on their similarities and identifies haplotype clusters that show significant associations with diseases/traits. We have performed extensive simulations based on realistic assumptions to evaluate the effectiveness of the proposed approach by considering different factors such as allele frequency, linkage disequilibrium (LD) structure, disease model and sample size. Comparisons with single-locus and haplotype-based TDT methods demonstrate that our approach consistently outperforms the TDT-based approaches regardless of disease models, local LD structures or allele/haplotype frequencies.

CONCLUSION

We present a novel haplotype-based association approach using family data. Experiment results demonstrate that it achieves significantly higher power than TDT-based approaches.

摘要

背景

近年来,基于单体型的方法在病例对照关联映射中得到了广泛的研究。研究表明,与基于单一位点的方法相比,单体型方法可以提供更一致的结果,特别是在未检测到因果变异的情况下。通过将相似或罕见的单体型聚类成组来减少关联测试的自由度,可以观察到更高的功效。对于基于家系的关联研究,一种常用的策略是传递不平衡测试(TDT),它检查等位基因/单体型向受影响和正常儿童的不平衡传递。已经开发了许多扩展方法来处理一般家系和连续性状。

结果

在本文中,我们提出了一种新的基于家系数据的单体型关联方法,与 TDT 框架不同。我们的方法(称为 F_HapMiner)基于我们之前在基于家系数据的单体型推断和基于单体型的关联映射方面的成功经验。它首先假设家系内没有重组,推断每个家系中每个个体的二倍体对。然后为每个起始单体型定义一个表型评分。最后,F_HapMiner 根据它们的相似性对那些起始单体型应用聚类算法,并识别与疾病/性状显著相关的单体型簇。我们基于现实假设进行了广泛的模拟,以考虑等位基因频率、连锁不平衡(LD)结构、疾病模型和样本量等不同因素,评估所提出方法的有效性。与单一位点和基于单体型的 TDT 方法的比较表明,无论疾病模型、局部 LD 结构或等位基因/单体型频率如何,我们的方法始终优于 TDT 方法。

结论

我们提出了一种使用家系数据的新的基于单体型的关联方法。实验结果表明,它比 TDT 方法具有更高的功效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea3d/3009518/85e91a252ba6/1471-2105-11-S1-S45-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验