Suppr超能文献

人类酪氨酸羟化酶的自然遗传变异:近端启动子中破坏的功能性转录控制基序的描绘。

Human tyrosine hydroxylase natural genetic variation: delineation of functional transcriptional control motifs disrupted in the proximal promoter.

作者信息

Zhang Kuixing, Zhang Lian, Rao Fangwen, Brar Bhawanjit, Rodriguez-Flores Juan L, Taupenot Laurent, O'Connor Daniel T

机构信息

Department of Medicine and Pharmacology, Center for Human Genetics and Genomics, University of California at San Diego, USA.

出版信息

Circ Cardiovasc Genet. 2010 Apr;3(2):187-98. doi: 10.1161/CIRCGENETICS.109.904813. Epub 2010 Feb 2.

Abstract

BACKGROUND

Tyrosine hydroxylase (TH) is the rate-limiting enzyme in catecholamine biosynthesis. Common genetic variation at the human TH promoter predicts alterations in autonomic activity and blood pressure, but how such variation influences human traits and, specifically, whether such variation affects transcription are not yet known.

METHODS AND RESULTS

Pairwise linkage disequilibrium across the TH locus indicated that common promoter variants (C-824T, G-801C, A-581G, and G-494A) were located in a single 5' linkage disequilibrium block in white, black, Hispanic, and Asian populations. Polymorphisms C-824T and A-581G were located in highly conserved regions and were predicted to disrupt known transcriptional control motifs myocyte enhancer factor-2 (MEF2), sex-determining region Y (SRY), and forkhead box D1 (FOXD1) at C-824T and G/C-rich binding factors specificity protein 1 (SP1), activating enhancer-binding protein 2 (AP2)], early growth response protein 1 (EGR1) at A-581G. At C-824T and A-581G, promoter and luciferase reporter plasmids indicated differential allele strength (T>C at C-824T; G>A at A-581G) under both basal circumstances and secretory stimulation. C-824T and A-581G displayed the most pronounced effects on both transcription in cella and catecholamine secretion in vivo. We further probed the functional significance of C-824T and A-581G by cotransfection of trans-activating factors in cella; MEF2, SRY, and FOXD1 differentially activated C-824T, whereas the G/C-rich binding factors SP1, AP2, and EGR1 differentially activated A-581G. At C-824T, factor MEF2 acted in a directionally coordinate fashion (at T>C) to explain the in vivo trait associations, whereas at A-581G, factors SP1, AP2, and EGR1 displayed similar differential actions (at G>A). Finally, chromatin immunoprecipitation demonstrated that the endogenous factors bound to the motifs in cella.

CONCLUSIONS

We conclude that common genetic variants in the proximal TH promoter, especially at C-824T and A-581G, are functional in cella and alter transcription so as to explain promoter marker-on-trait associations in vivo. MEF2, FOXD1, and SRY contribute to functional differences in C-824T expression, whereas SP1, AP2, and EGR1 mediate those of A-581G. The SRY effect on TH transcription suggests a mechanism whereby male and female sex may differ in sympathetic activity and hence blood pressure. These results point to new strategies for diagnostic and therapeutic intervention into disorders of human autonomic function and their cardiovascular consequences.

摘要

背景

酪氨酸羟化酶(TH)是儿茶酚胺生物合成中的限速酶。人类TH启动子的常见基因变异可预测自主神经活动和血压的改变,但这种变异如何影响人类性状,特别是是否影响转录尚不清楚。

方法与结果

对TH基因座的成对连锁不平衡分析表明,常见的启动子变异(C-824T、G-801C、A-581G和G-494A)在白人、黑人、西班牙裔和亚洲人群中位于单个5'连锁不平衡区域。多态性C-824T和A-581G位于高度保守区域,预计会破坏已知的转录控制基序,C-824T处的肌细胞增强因子2(MEF2)、性别决定区域Y(SRY)和叉头框D1(FOXD1),以及A-581G处的富含G/C结合因子特异性蛋白1(SP1)、激活增强子结合蛋白2(AP2)、早期生长反应蛋白1(EGR1)。在C-824T和A-581G处,启动子和荧光素酶报告质粒表明在基础状态和分泌刺激下等位基因强度存在差异(C-824T处T>C;A-581G处G>A)。C-824T和A-581G对细胞内转录和体内儿茶酚胺分泌均有最显著的影响。我们通过在细胞中共转染反式激活因子进一步探究了C-824T和A-581G的功能意义;MEF2、SRY和FOXD1对C-824T有不同程度的激活作用,而富含G/C结合因子SP1、AP2和EGR1对A-581G有不同程度的激活作用。在C-824T处,因子MEF2以定向协同的方式(T>C)发挥作用来解释体内性状关联,而在A-581G处,因子SP1、AP2和EGR1表现出类似的差异作用(G>A)。最后,染色质免疫沉淀表明内源性因子在细胞中与这些基序结合。

结论

我们得出结论,TH近端启动子中的常见基因变异,尤其是C-824T和A-581G,在细胞中具有功能并改变转录,从而解释了体内启动子标记与性状的关联。MEF2、FOXD1和SRY导致C-824T表达的功能差异,而SP1、AP2和EGR1介导A-581G的功能差异。SRY对TH转录的影响提示了一种机制,即男性和女性在交感神经活动以及血压方面可能存在差异。这些结果为诊断和治疗人类自主神经功能障碍及其心血管后果指明了新的策略。

相似文献

1
Human tyrosine hydroxylase natural genetic variation: delineation of functional transcriptional control motifs disrupted in the proximal promoter.
Circ Cardiovasc Genet. 2010 Apr;3(2):187-98. doi: 10.1161/CIRCGENETICS.109.904813. Epub 2010 Feb 2.
3
Human tyrosine hydroxylase natural allelic variation: influence on autonomic function and hypertension.
Cell Mol Neurobiol. 2010 Nov;30(8):1391-4. doi: 10.1007/s10571-010-9535-7. Epub 2010 Jun 23.
5
Adrenergic polymorphism and the human stress response.
Ann N Y Acad Sci. 2008 Dec;1148:282-96. doi: 10.1196/annals.1410.085.
7
Interactions between Egr1 and AP1 factors in regulation of tyrosine hydroxylase transcription.
Brain Res Mol Brain Res. 2003 Apr 10;112(1-2):61-9. doi: 10.1016/s0169-328x(03)00047-0.
8
Functional polymorphism (C-824T) of the tyrosine hydroxylase gene affects IQ in schizophrenia.
Psychiatry Clin Neurosci. 2014 Jun;68(6):456-62. doi: 10.1111/pcn.12157. Epub 2014 Feb 26.

引用本文的文献

4
Linking Y-chromosomal short tandem repeat loci to human male impulsive aggression.
Brain Behav. 2017 Oct 16;7(11):e00855. doi: 10.1002/brb3.855. eCollection 2017 Nov.
5
Genetic Variations of Tyrosine Hydroxylase in the Pathogenesis of Hypertension.
Electrolyte Blood Press. 2016 Dec;14(2):21-26. doi: 10.5049/EBP.2016.14.2.21. Epub 2016 Dec 31.
8
Reduced calcium current density in female versus male mouse adrenal chromaffin cells in situ.
Cell Calcium. 2012 Sep-Oct;52(3-4):313-20. doi: 10.1016/j.ceca.2012.04.003. Epub 2012 Apr 30.
9
Large-scale gene-centric meta-analysis across 39 studies identifies type 2 diabetes loci.
Am J Hum Genet. 2012 Mar 9;90(3):410-25. doi: 10.1016/j.ajhg.2011.12.022. Epub 2012 Feb 9.
10
Circulating microRNAs involved in multiple sclerosis.
Mol Biol Rep. 2012 May;39(5):6219-25. doi: 10.1007/s11033-011-1441-7. Epub 2012 Jan 10.

本文引用的文献

1
Which Sry locus is the hypertensive Y chromosome locus?
Hypertension. 2009 Feb;53(2):430-5. doi: 10.1161/HYPERTENSIONAHA.108.124131. Epub 2008 Dec 15.
2
Regulation of rat dopamine beta-hydroxylase gene transcription by early growth response gene 1 (Egr1).
Brain Res. 2008 Feb 8;1193:1-11. doi: 10.1016/j.brainres.2007.11.055. Epub 2007 Dec 5.
4
Stress-induced catecholaminergic function: transcriptional and post-transcriptional control.
Stress. 2007 Jun;10(2):121-30. doi: 10.1080/10253890701393529.
8
Gene expression of phenylethanolamine N-methyltransferase in corticotropin-releasing hormone knockout mice during stress exposure.
Cell Mol Neurobiol. 2006 Jul-Aug;26(4-6):735-54. doi: 10.1007/s10571-006-9063-7. Epub 2006 May 12.
9
Increased susceptibility to transcriptional changes with novel stressor in adrenal medulla of rats exposed to prolonged cold stress.
Brain Res Mol Brain Res. 2005 Nov 18;141(1):19-29. doi: 10.1016/j.molbrainres.2005.07.019. Epub 2005 Sep 19.
10
CONREAL web server: identification and visualization of conserved transcription factor binding sites.
Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W447-50. doi: 10.1093/nar/gki378.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验