Department of Chemistry, Imperial College London, London, UKSW7 2AZ.
Phys Chem Chem Phys. 2010 Feb 21;12(7):1610-7. doi: 10.1039/b918607g. Epub 2010 Jan 11.
We investigate using transient non-equilibrum molecular dynamics simulation the temperature relaxation process of three structurally different proteins in water, namely; myoglobin, green fluorescence protein (GFP) and two conformations of the Ca(2+)-ATPase protein. By modeling the temperature relaxation process using the solution of the heat diffusion equation we compute the thermal conductivity and thermal diffusivity of the proteins, as well as the thermal conductance of the protein-water interface. Our results indicate that the temperature relaxation of the protein can be described using a macroscopic approach. The protein-water interface has a thermal conductance of the order of 100-270 MW K(-1) m(-2), characteristic of water-hydrophilic interfaces. The thermal conductivity of the proteins is of the order of 0.1-0.2 W K(-1) m(-1) as compared with approximately 0.6 W K(-1) m(-1) for water, suggesting that these proteins can develop temperature gradients within the biomolecular structures that are larger than those of aqueous solutions. We find that the thermal diffusivity of the transmembrane protein, Ca(2+)-ATPase is about three times larger than that of myoglobin or GFP. Our simulation shows that the Kapitza length of these structurally different proteins is of the order of 1 nm, showing that the protein-water interface should play a major role in defining the thermal relaxation of biomolecules.
我们使用瞬态非平衡分子动力学模拟研究了三种结构不同的蛋白质在水中的温度弛豫过程,分别为肌红蛋白、绿色荧光蛋白(GFP)和两种构象的 Ca(2+)-ATPase 蛋白。通过使用热扩散方程的解来模拟温度弛豫过程,我们计算了蛋白质的热导率和热扩散率,以及蛋白质-水界面的热导。我们的结果表明,可以使用宏观方法描述蛋白质的温度弛豫。蛋白质-水界面的热导约为 100-270 MW K(-1) m(-2),与亲水界面的水相似。与水的约 0.6 W K(-1) m(-1)相比,蛋白质的热导率约为 0.1-0.2 W K(-1) m(-1),这表明这些蛋白质在生物分子结构内可以产生比水溶液更大的温度梯度。我们发现,跨膜蛋白 Ca(2+)-ATPase 的热扩散率约为肌红蛋白或 GFP 的三倍。我们的模拟表明,这些结构不同的蛋白质的 Kapitza 长度约为 1nm,这表明蛋白质-水界面在定义生物分子的温度弛豫方面应发挥主要作用。